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Abstract
This paper includes various parts of the theory of mixed type partial differential equations with 
initial and boundary conditions in fluid mechanics ,such as: The classical dynamical equation of 
mixed type due to Chaplygin (1904), regularity of solutions in the sense of Tricomi (1923) and in 
brief his fundamental idea leading to singular integral equations, and  the new mixed type 
boundary value problems  due to Gellerstedt (1935), Frankl (1945),  Bitsadze and  Lavrent’ev 
(1950),  and  Protter (1950-2007 ). Besides this work contains the classical energy integral 
method and quasi-regular solutions and weak solutions ,  as well as  the well-posedness of the 
Tricomi , Frankl, and   Bitsadze - Lavrent’ev  problems in the sense that: “There is at most one 
quasi-regular solution and a weak solution exists”. Furthermore  Rassias ( Ph.D.  dissertation, U. 
C. , Berkeley, (1977) ) generalized the Tricomi and Frankl problems in  n dimensions based on  
Protter’s  proposal. This author generalizes even further the results obtained  through the said 
thesis. Also this paper provides a maximum principle for the Cauchy problem  of  hyperbolic 
equations in  multi-dimensional space-time regions, the formulation and solution of the Tricomi-
Protter problem, a selection of several uniqueness and existence theorems and  recent  open 
problems suggested  by Rassias  in the theory of mixed type partial differential equations and 
systems with applications in fluid mechanics.  
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1.   INTRODUCTION 

The theory of partial differential equations of mixed type with boundary conditions originated in the 
fundamental research of  Tricomi [63]. The Mixed type partial differential equations are encountered in 
the theory of transonic flow and they give rise to special boundary value problems, called the Tricomi 
and  Frankl problems. The Transonic flows involve a transition from the subsonic to the supersonic 
region through the sonic curve. Therefore, the transonic flows are very interesting phenomena 
appearing  in aerodynamics and hydrodynamics. The well-known mixed type partial differential 

equation was called Tricomi equation : 0xx yyyu u� �  named after Tricomi ,who introduced this 

equation, for functions u=u(x, y) in a real (x, y)-region. It  plays a central role in the mathematical 
analysis of the transonic flows, as it is of elliptic and hyperbolic type  where the coefficient  y of the 
second partial derivative of the involved function u=u(x, y) with respect to x , changes sign. Besides 
this equation is of parabolic type where  y  vanishes.   
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Definition 1. 1.The Tricomi problem or Problem T  consists in finding a function  u  which satisfies  
the afore-mentioned Tricomi equation in a mixed domain D : a simply connected and bounded (x, y)-
region  by a rectifiable Jordan (non-self-intersecting) elliptic arc  �   (for  y  positive) with endpoints 
O=(0,0) and A=(1,0) and by two real hyperbolic characteristics ,�� of the Tricomi equation satisfying 

the pertinent characteristic equation such that these characteristics ,��  meet at a point P (for  y  

negative)  with � emanating from A and  �  from O,  

3/ 22: ( ) 1
3

x y� � � �  and 3/ 22: ( ) 0
3

x y� � � �

and  u  assumes prescribed continuous boundary values on  both  arcs �   and � . The portion of D  

lying in the upper half-plane, above the x-axis, is the elliptic region; portion of D  lying in the lower 
half-plane, below the x-axis, is the hyperbolic region; and the segment OA is parabolic. 

Definition 1. 2. A function u=u(x, y) is a regular solution of Problem T   if: 

1) u is continuous in the closure of D which is the union of D with its boundary consisting of the three 
curves � , ,�� ;

2) The first order partial derivatives of u are continuous in the closure of D except  

possibly at points O, A, where they may have poles of order less than 2/3; 

3) The second order partial derivatives of u are continuous in D except possibly on OA where they 
may not exist; 

4) u satisfies Tricomi equation at all points of D except OA; 

5) u assumes prescribed continuous boundary values on  arcs �   and � .

Fundamental idea of Tricomi in finding Regular Solutions for Problem T: 

1) To solve Neumann problem or Problem  N (in elliptic sub-region of D):  To find a regular 
solution of the Tricomi equation satisfying the boundary conditions: 

1a)  u assumes prescribed continuous boundary values on  � , such that,  u  equals to  a continuous  
function �  on � ;

1b)  The first order partial derivative of  u with respect to y equals to  a continuous  function ( )x	 	�
on OA except possibly at points O, A, where it may go to infinity of order less than 2/3.  

2)  To solve Cauchy  problem (in the hyperbolic sub-region of D):  

      To find a regular solution of the Tricomi equation satisfying the initial    

      conditions: 

2a)  u assumes continuous values on  OA such that u equals to  a continuous  function ( )x
 
�  on 
OA except possibly at points O, A, where it may go to infinity of order less than 2/3; 

2b)  The first order partial derivative of  u with respect to y equals to  a continuous  function ( )x	 	�
on OA except possibly at points O, A, where it may go to infinity of order less than 2/3.  

3)  To solve Goursat  problem (in the hyperbolic sub-region of D):  

      To find a regular solution of the Tricomi equation satisfying the boundary conditions: 

3a)  u assumes continuous values on  OA such that u equals to  a continuous  function ( )x
 
�  on 
OA except possibly at points O, A, where it may go to infinity of order less than 2/3; 

3b)  u  assumes prescribed continuous boundary values on �  such that  u  equals to  a continuous  
function �  on � .
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Most  fundamental results on Mixed Type Equations with Applications: 

In 1904, Chaplygin  [2] has pointed out that the theory of gas flow is closely connected with the study 
of a mixed type equation named Chaplygin equation  

: ( ) 0xx yyLu K y u u� � �

by replacing coefficient y of the second order partial derivative of u with respect to  x  in Tricomi 
equation by a  function  ( )K K y�  of  y . Consider a two-dimensional adiabatic potential flow of a 
perfect gas. The stream function ( , )x y� �� satisfies 

2 2 2 2 2 2( ) 2 ( ) 0y xx x y xy x yy�  � � � � � �  � �� � � � � ,                             (1.1) 

where: : � the local velocity of sound  and :� � the density of the gas. 

This equation is transformed to a linear equation of mixed type by applying the following hodograph 
transformation  1 1;y xu v� � � �� �� � � ,where , :u v =the rectangular velocity components as new 
independent variables. 

The corresponding components in polar coordinates are: 2 2 1; tan ( )vr u v
u

� �� � �  . 

To normalize r ,  introduce :  2
0( / )t r r�  , which is dimensionless quantity, as independent variable, 

where 0 :r � the speed corresponding to zero density. Therefore above-mentioned  equation (1.1)
becomes 

1

2 1 (1 2 ) 0
(1 ) 2(1 )t
t t

t t t ��� �

�� ��

� �� � �
� �� �� � �� �

,                                    (1.2) 

where: /( )v p vc c c� � � ,such that: pc :=the specific heat at a constant pressure, 

:vc � the specific heat at a constant volume. Note that:  

1
0 0 /( 1)r k�� ��� � : /p vc c� � , 0 :� � the density of gas at zero speed, 

k (:=constant) satisfies the relation: p k ��� .

Introduce new independent variables  1
2 1

(1 );
2

t u du
u

�

�

� � �
�

�
� � ��  . 

Then, the afore-mentioned equation (1.2)  becomes 

( ) 0K �� ��� � �� � ,                                                  (1.3) 

where: (1 2 )( ) (1 (1 2 ) ).(1 )K K t t �� � � �� � � � � , and 

:� �a positive constant (� 2.5  for air) ; :� � a positive constant (� 1.4  for air). 

Besides: (0) 0, 0 1/(2 1)K because for t� �� � � � . This case corresponds to points where 
the velocity is equal to the local velocity of sound, and therefore above equation (1.3)  is parabolic. 

Moreover: ( ) 0K � � , because   0 1/(2 1)for t� �� � � ;corresponding to subsonic velocities, and 
equation (1.3)  is elliptic.

Similarly: ( ) 0K � � , because   0 1/(2 1)for t� �� � � ;corresponding to supersonic velocities, 
and equation (1.3)  is hyperbolic.  
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Therefore ,the partial differential equation (1.3)  is of mixed type.

Remarks 1. 3. 

i. The velocity potential  ( , )x y� ��  and the stream function ( , )x y� �� satisfy Cauchy-
Riemann equations: 
1 1;x y y x� � � � � �� �� � �  . 

ii. The discriminant of equation: 0L� �  is given by the formula 

2 2 2 2 2 2 2 4 2( )( ) ( ) ( ) (1 )y x x yD M�  � �  � � � �� � � � � � ,

where:  2 2: : / ; /x yM Mach number r r � � �� � � .A flow is called subsonic, sonic or 

supersonic at a point as the flow speed  r , , .or  � � �

iii. Transonic flows involve a transition from the subsonic to the supersonic region through 
the sonic. 

iv. Equation (1.1) is quasi-linear and is converted to the linear equation of mixed type (1.3). 
The corresponding equation is the following  

            quasi-linear equation: 2 2 2 2( ) 2 ( ) 0x xx x y xy y yy � � � � �  � �� � � � � ,           

where ( , )x y� ��  is the velocity potential. This equation comes from 

the Euler continuity equation: ( ) ( ) 0x x y y�� ��� � .

In 1935, Gellerstedt [8] generalized Problem T by replacing coefficient y of the second order partial 
derivative of u with respect to  x in the Tricomi equation by a power of y. One may consider  the well-
known mixed type partial differential equation called Gellerstedt  equation: 

sg ( ) 0, 0m
xx yyn y y u u m� � �

named after S. Gellerstedt ,who introduced this equation. 

Definition 1. 4. The Gellerstedt  problem or Problem G  consists in finding a function  u  which 
satisfies  the afore-mentioned Gellerstedt equation in a mixed domain D : a simply connected and 
bounded (x, y)-region  by a rectifiable Jordan (non-self-intersecting) elliptic arc  �   (for  y  positive) 
with endpoints O=(0,0) and A=(1,0) and by two real hyperbolic characteristics ,�� of the Gellerstedt 
equation satisfying the pertinent characteristic equation such that these characteristics ,��  meet at a 
point P (for  y  negative)  with � emanating from A and  �  from O, 

( 2) / 22: ( ) 1
2

mx y
m

�� � � �
�

   and ( 2) / 22: ( ) 0
2

mx y
m

� �� � �
�

and  u  assumes prescribed continuous boundary values on  both  arcs �   and � .

In 1945, Frankl [5] drew attention to the fact that the Tricomi problem is closely related to study of gas 
flow with nearly sonic speeds. 

Definition 1. 5. The Frankl  problem or Problem F  consists in finding a function  u  which satisfies  
the afore-mentioned  Chaplygin equation in a mixed domain D : a simply connected and bounded (x, 
y)-region  by a rectifiable Jordan (non-self-intersecting) elliptic arc  �   (for  y  positive) with endpoints 
O=(0,0) and A=(1,0) and by one real hyperbolic characteristic �  (from A), 

0
: ( ) 1, 0

y
x K t dt for y� � � � ��
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of the Chaplygin equation satisfying the pertinent characteristic equation and by the non-characteristic 
curve � �  (emanating from O) lying inside the characteristic triangle OAP and intersecting the  
characteristic �  at most once, where � �  may coincide with the hyperbolic characteristic curve  

0
: ( ) , 0

y
x K t dt for y� � � � �� , and � , �  intersect  at point P  as well as   u  assumes 

prescribed continuous boundary values on  both  arcs �   and � � .

In 1950, Lavrent’ev and Bitsadze [14] initiated the work on boundary value problems for  mixed type 
equations with discontinuous coefficients. One can consider the well-known mixed type Bitsadze - 
Lavrent’ev  equation:     sgn( ) 0,xx yyy u u� � named after Lavrent’ev and Bitsadze, who introduced 

this equation with the discontinuous coefficient sgn( ) : 1, 0; 1, 0; 0, 0y y y y� � � � � � � .

Definition 1. 6. The Bitsadze - Lavrent’ev  problem or Problem BL  consists in finding a function  u  
which satisfies  the afore-mentioned Bitsadze - Lavrent’ev  equation in a mixed domain D : a simply 
connected and bounded (x, y)-region  by a rectifiable Jordan (non-self-intersecting) elliptic arc  �
(for  y  positive) with endpoints O=(0,0) and A=(1,0) and by two real hyperbolic characteristics 

,�� of :The Bitsadze - Lavrent’ev  equation satisfying the pertinent characteristic equation such that 
these characteristics ,��  meet at a point P (for  y  negative)  with � emanating from A and  �  from 

O, : 1x y� � �   and  : 0x y� � �  and  u  assumes prescribed continuous boundary values on  
both  arcs �   and � .

The works performed in 1953, by Guderley [9] , Busemann [1], and Protter [16] are of great 
importance in the field of mixed type equations with applications. In particular, Protter  established 
certain uniqueness theorems for boundary value problems involving equations of mixed elliptic-

hyperbolic type by improving the famous Frankl condition  
( )( ) 1 2( ) 0, 0
( )

K yF y for y
K y

�� � � �
�

.

In 1954, Protter [17]showed how problems of Goursat type other than those considered by Soboleff  
[62] and Garding [7] may be stated and solved for the multi-dimensional wave equation. These results 
lead in a natural way to certain generalizations of the Tricomi problem for equations of mixed elliptic-
hyperbolic type.  Protter  introduced the following definition: 

Definition 1. 7. A function u=u(x, y) is quasi-regular solution  of Problem T if: 

      1)  2 ( ) ( ), ,u C D C D D D D D � �� � �  � � �  � ;

      2)  The integrals 
1 2 2

0 { }
( ,0) ( ,0) ( )y x yD y o
u x u x dx and Ku u dxdy

� �
�� ��    exist; 

3) Green’s theorem is applicable to the integrals 

, , ;x yD D D
uLudxdy u Ludxdy u Ludxdy�� �� ��

4) The boundary integrals which arise exist in the sense that: The limits taken over corresponding 
interior curves exist as these interior curves approach the boundary; 

5)  u satisfies Chaplygin equation in D; 

6) u satisfies prescribed continuous boundary conditions: 

      ( ) ; ( )u s on and u x on� � �� � � .

2. UNIQUENESS AND EXISTENCE OF SOLUTIONS 

In 1977, Rassias [20] generalized the Tricomi and Frankl problems in  n  dimensions, worked the 
hyperbolic degenerate boundary value problem in  n  dimensions, as well, and introduced a new 
boundary value problem in the theory of mixed type equations: 

“The bi-hyperbolic degenerate  problem” for  the bi-hyperbolic degenerate equation: 
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( )( ) ( , , ) ( , , )xx yy zzLu K z u u u x y z u f x y z!� � � � �  such that: 

( ) 0 0; 0 0; 0 0K z for z for z for z� � � � � �  and 0 ; 0x y! ! !" � # ,

 in {( , , )}x y z - bounded simply-connected region  3( )D $ �  surrounded: 

for 0z �  by a characteristic surface 3
yS  and a smooth surface  4

y% :

& '
1/ 22

2
3 0 0

: ( )
zyS y x x K t dt( )

� � �* +
, -� ; & '

1/ 22
2

4 0 0
: ( )

zy y x x K t dt�( )
% � � � �* +

, -�

and for 0z �  by a new characteristic surface 4
xS  and a smooth surface  3

x% :

& '
1/ 22

2
4 0 0

: ( )
zxS x x y K t dt( )

� � � � �* +
, -� ; & '

1/ 22
2

3 0 0
: ( )

zx x x y K t dt�( )
% � � � �* +

, -�

with non-negative real constants  0 0; 1.x �� #

All these surfaces intersect the {( , )}x y -plane at the straight lines: 

1 0 2 0 3 0 4 0: 0 ; : 0 ; : 0 ; : 0l x y x l x y x l x y x l x y x� � � � � � � � � � � � .

Then Rassias introduced the following mixed type boundary value problem: 

The bi-hyperbolic degenerate boundary value problem in 3� :A solution ( , , )u u x y z�  of  the above 

bi-hyperbolic degenerate equation in D is found  assuming prescribed boundary values on  3 4
x y%  % ,

such that  

3 40 x yu on� %  %  and 2 2 1 0( ) ; ( ) ; ( ) ; ( )u C D K C D C D f C D!� � � � ,

where   D D D�  � ,and 4 3 3 4
x y x yD S S� �   %  %   is the boundary of  domain D. 

Definition  2. 1. A function ( , , )u u x y z�  is called quasi-regular solution of the above bi-hyperbolic 
degenerate problem if the following conditions hold: 

      1)  2 ( )u C D� ;      2)  The integral . /
{ 0}

.
D z

dxdy
� �
�    exists; 

3) If ( ) ( 1,2)iD i0 � are regions with boundaries ( )iD 0� lying entirely in iD  such that 

1 2 1 21 20 ; 0D D z D D z� � � � � � , the boundary integrals along ( )iD 0�  ,which result from 
the Green’s theorem to the integrals 

( ) ( )

; ( )
i i

x y
D D

u dV u dV dV dxdydz
0 0

���� ���

have a limit when ( )iD 0�  approaches iD� .Then he stated and proved: 

Uniqueness Theorem  2. 2. If we assume that 0 ; 0x y! ! !" � #  in mixed domain D, this bi-
hyperbolic degenerate  problem  has at most one quasi-regular solution in D. 

In  1979 and 1982, Rassias  ([21]-[27]) published the afore-mentioned part of his Ph. D. Dissertation 
(U. C. Berkeley, 1977) on uniqueness results for the Frankl problem for his bi-hyperbolic degenerate  
equation: ( )( ) ( , , ) ( , , )xx yy zzLu K z u u u x y z u f x y z!� � � � �
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and an application of positive symmetric systems [30]. 

In  1980, Rassias [22] introduced the bi-hyperbolic boundary value problem for his new bi-hyperbolic 
equation: ( ) sgn( ) ( , ) ( , )xx yyLu K y u y u r x y u f x y� � � � .

In  1982, Rassias [28] established maximum principles of the Cauchy problem for hyperbolic 
equations in 3�  and  1n�� ( 2)n # .His results generalized the results of  Weinberger [64] and  
Sather ([59]-[60]) for a class of hyperbolic equations of the form: 

1 1 2 2

0( )( ) ( , ) ( )x x x x ttLu K t u u u f x t C D� � � � � , where 1 2( , )x x x�  ;

& '22 2
0 1 2 0

( , ) : 0, ( ) ;
T

D x t T t T x x K s ds D D D� �
� " " � � � � �  �� �
� �� ,

 in 1 2{ , , }x x t -space and  analogously generalized in 1 2{ , ,..., , }nx x x t - space.  

Throughout this investigation, the influence of the work of  Douglis [4] and of the famous book of  
Protter and  Weinberger [19]  is apparent. In fact, let 0S be the portion of the boundary D�  of D, 

which lies in the plane 0t T� , and 4S  be the remainder of the boundary G of D, which is a 
characteristic conoid with respect to the above hyperbolic equation. Then  Rassias introduced  a 
solution ( , )u u x t�  of this equation in D which satisfies the initial (or Cauchy) conditions  

2 0
0 0( , ) ( ) ( ), ( , ) ( ) ( ).tu x T r x C D u x T h x C D� � � � With the change of variable  

( , ) ( , ) ( )v x t u x t r x� � the afore-mentioned hyperbolic equation can be written as follows: 

1 1 2 2

0( )( ) ( , ) ( ),x x x x ttLv K t v v v F x t C D� � � � � where  
1 1 2 2

( , ) ( , ) ( )( )x x x xF F x t f x t K t r r� � � � .
The initial data above change to 

0
0 0( , ) 0 ( , ) ( ) ( ).tv x v x T h x C D3 � � �

Assume the transformation to spherical polar coordinates: 

1 2cos , sin ,x r p x r p� �   where [0, 2 ), ( ) .
T

t
p r K s ds4� � ��

Therefore Rassias obtained 
1 1 2 2

2 2

2 2 2
1 2

1 1, ,x x x x rr r ppv v v v v v
x x r r
� �

5 � � 5 � � � � �
� �

0
0 02

1 1( )( ) ( ) ( , , ) ( ).rr pp r ttLv K t v v K t v v F F r p t C D
r r

� � � � � � �

Let 4
eS  be the truncated part of 4S , where 0 ,r e� such that 

0
0

0 ( ) , ( )
T T

T T
r K s ds e K s ds� � � �� �  : 0

0 0.T t T T" " " �

The direct characteristic conoid  4S  as well as the truncated one  4
eS  are  generated by the bi-

characteristics of space-time: 1 2cos , sin .x r p x r p� �

The angle parameter p is constant along each fixed generator of 4S . On the other hand, the total 

derivative of 4S  is given by
1 ( ) .

( )
d K t
dr r rK t

� �
� � � �

� ��

Setting 1/ 2 1/ 4( ) , ( , , ) ( ( )) ;d K t w w r p t r K t
t r

� �� �
� � � � � �
� �

2

40
( , , ) e

p
V v r p t dp on S

4

�
� � ,

Rassias stated and proved the following maximum principle: 
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Maximum Principle 2. 3. Let us suppose  that the function 2( , , ) ( )v r p t C D� satisfies the differential 

inequality 0 0,Lv F� "  and  inequality : 0 0( , , ) 0, ( , , ) ( , ) 0,tv r p T v r p T h r p� � "

where D is defined above, and assume the following condition: 

& '( ) ( ) ( ) 0,
2 ( )

d K t dw K t d w
dr drK t

�
6 7�

� � #8 98 9�: ;
 and : 0V � . Then ( , , ) 0 .v r p t in D"

In  1983, the author [31] introduced the bi-elliptic, hyperbolic and bi-parabolic equation: 
( 1) 0xx yyLu y y u u� � � � with two parabolic lines: 0 ; 1y y� � .

Most of the recent workers in the field of mixed type boundary value problems have considered only 
one parabolic line of degeneracy. The problem with two parabolic lines of degeneracy becomes more 
complicated. Rassias  introduced an equation: 

bi-elliptic for 1, 0y and y� � ; hyperbolic for  0 1y� � ; and 

bi-parabolic  for 0 1y and y� � .

Besides Rassias  assumed  D as a simply connected  and  bounded domain by:An elliptic curve 

0� emanating from the points 1(0,1)A  and  1(1,1)B  and lying in the upper half-plane 1y �  ; Another 

elliptic curve 0�� emanating from the points 2 (0,0)A  and  2 (1,0)B  and lying in the lower half-plane 

0y �  ; and 

The following four characteristic hyperbolic curves of our above mixed type equation lying in the 
region 2

2 {( , ) : 0,0 1}G x y x y� � � � $ � , such that: 

2 1
1 1 1 1

1 1( ) : (1 ) (1 2 ) sin (2 1)
4 8 16

y
A P x y y dy y y y y 4�� � � � � � � � � � ��   ; 

2 1
1 2 1 0

1 1 3( ) : (1 ) (2 1) sin (2 1)
4 8 16

y
A P x y y dy y y y y 4��� � � � � � � � � ��   ; 

2 1
2 1 2 1

1 1( ) : 1 (1 ) (2 1) sin (2 1) 1
4 8 16

y
B P x y y dy y y y y 4�� � � � � � � � � � � ��   ;

2 1
2 2 2 0

1 1 3( ) : 1 (1 ) (1 2 ) sin (2 1) 1
4 8 16

y
B P x y y dy y y y y 4��� � � � � � � � � � � �� .

If one considers the afore-mentioned mixed type equation, then Rassias introduces the Tricomi 
problem which  consists in finding a function ( , )u u x y�   that satisfies this equation and the 

boundary condition 
0 0 2 2

| 0u � ��  �  �  � �  .Then he stated and proved: 

Uniqueness Theorem  2. 4.  If one assumed the star-likedness conditions: 

0

0

( 1) 0
0

xdy y dx on
xdy ydx on
� � # ��

� �� # ��
,

then  the Tricomi problem has at most one quasi-regular solution in D. 

In  1988, Rassias [37] introduced the non-linear elliptic, hyperbolic and parabolic equation: 
( ) ( , , , , )xx yy x yLw K y w w f x y w w w� � ��  and proved three uniqueness theorems for quasi-regular 

and regular solutions ( , )w w x y�  of the Tricomi problem. 

 In fact, he assumed the following conditions: 
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1
0

( )( ) : K(0)=0;K (y)>0 for  y<0 ; lim 0
( )y

K yc
K y�<

� �
�

,

2( ) : ( ; ) :x yc p w q w� � are continuous functions of 1, , , , : , , ,x y w p q w p q��

for any x, y  in a simply-connected domain G  bounded for 0y �  by a non-self-intersecting Jordan 

smooth curve 1� intersecting the (: 0)x axis y� � at the points 1 2(0,0) ; (1,0)O O , and for 0y �  by 

the characteristic curves 2 3;� �  of the above non-linear equation emanating from the points 

2 1(0,0) ; (1,0)O O , respectively, and intersecting at some point in the lower half-plane, such that 

2 30 0
: 1 ( ) ; : ( )

y y
x K t dt x K t dt� � � � � � � �� � .

Denote 1 2 1 2 1 20 1 20 ; 0 ; 0G G y G G y G G y� � � � � � � � � , and boundary 

1 2 3G� � �  �  � . The above-mentioned non-linear equation is elliptic in 1G ,

hyperbolic in 2G  and parabolic in 0G . Also he assumed prescribed continuous boundary values: 

1 2w g on� �  � , where 0 0 1 2( );g g s s� ��  � , and  g  is continuous  on  1 2�  � . The 

author assumed two solutions  1 2w and w .

Then 1 2u w w� �  satisfies equation : ( ) 0xx yyLu K y u u f� � �5 � , or 

( ) ( , ) ( , ) ( , ) 0xx yy x yLu K y u u r x y u s x y u t x y u� � � � � � ,                           (2.1) 

where             
1

2 2 20
( , ) ( , , , , )

h

w x x y yh
r r x y f x y w hu w hu w hu dh

�

�
� � � � �� ,

1

2 2 20
( , ) ( , , , , )

h

p x x y yh
s s x y f x y w hu w hu w hu dh

�

�
� � � � �� ,

1

2 2 20
( , ) ( , , , , )

h

q x x y yh
t t x y f x y w hu w hu w hu dh

�

�
� � � � �� ,

and                1 1 1 2 2 2( , , , , ) ( , , , , )x y x yf f x y w w w f x y w w w5 � �

� 2 2 2 2 2 2( , , , , ) ( , , , , )x x y y x yf x y w u w u w u f x y w w w� � � �

(because: 1 2 1 2, ),u w w or w w u or� � � �

1

2 2 20
( , , , , )

h

x x y y x yh
f df x y w hu w hu w hu ru su tu

�

�
5 � � � � � � �� .  Besides 

1 20u on� �  � .                                                          (2.2) 

Mixed type boundary value problem  or  Problem (M): 

consists in finding a function ( , )u u x y�  which satisfies equation (2.1) in a mixed type domain G   

and  assumes boundary conditions (2.2). Denote: 
1 1, :

2 2( ) mm m yy K y
4 4� �� �

:mwhere y � maximum of the ordinates of points on  1� ;

2 2 2 2

0

2 ( )1
4

p qf Kf K K
f

K
� �� � �

� ,      2 2 2( )( 1) 0
( )m

K yK
K y

� � �� � � � ,  as  K is:  
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( ) ( )m my y implies K y K y� � ; 2( ) 1 2 2K K KR R y in G
K K

�
� �6 7� � � �8 9� �: ;

.

Assume  the following  additional conditions: 
3

3 0 1( ) : ( , , , , )wc f f for x y w p q G# � =� ,

4 2( ) : 0c R in G# ,

3
5 2( ) : ( , , , , )p qc f K f for x y w p q G� � � =� ,

6
1( ) : 0
4p
Kc f R
K
�

" "
�

3
2( , , , , )for x y w p q G� =� , and 

3
2 22

7( ) : 4( )( ) (4( ) ) , 0w w p wc K K f R K f K f f� �� # � � # , or 

01 02wf f f" " 3
2( , , , , )for x y w p q G� =� ,

where   & ' & '01 2

1 2 4
8 p p
Kf K R K f K K R K f R
K
� ( )� � �� � � � � �* +, -

, and 

& ' & '02 2

1 2 4
8 p p
Kf K R K f K K R K f R
K
� ( )� � �� � � � � �* +, -

 .

Special Case: 0 ( : 0) :p qf therefore f� � 2 2
3

1( ) : ( )
2wc f K � �� # �  in 1

1G =� ,

2

7
1( ) : 0
4w
Kc f R
K
�6 7� " " 8 9

: ;
 in 1

2G =� .

Then Rassias  stated and proved the following uniqueness theorem: 

Uniqueness Theorem  2. 5. If one assumed ( ) : ( 1,2,3,4,5,6,7)ic i � , then  the above Problem  (M) 
has at most one quasi-regular solution in  domain  G. 

To prove the uniqueness of quasi-regular solutions and thus above theorem one may consider the 
differential operator   ( , ) ( , ) ( , )y yMu a x y u b x y u c x y u� � � :

1

2

1 cos( ),
2

1 ,
2

x

x

e y in G
a

e in G

�

�

���>>� �
> �
>�

 ; 1

2

0 ,

,

in G
b

Gc K in
�>� �

�>�
;

1

2

0 ,
4 ,

in G
c aK in G

K

�
>� �
> ��

 , 

and Green’s theorem on the double integral in G:  ,
G G

Mu Lu MuLudxdy� �� .

Besides to investigate regular solutions we consider above conditions in a new simply connected 
domain eG  ( part of domain G) bounded in the neighborhood of 1O  by  a circular  arc eD  ( y>0)  with 

center 1O and radius e, and near 2O  by  eS  ( 0)y � : eS  is the line: 1x e� � ,  if 11x on� �

near 2O ; eS  consists of the two the lines: 1x e� � ; y e� ,  if 11x on# �  near  2O ,and by 
characteristics: 

dx K dy� � � .
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 Denote: 1 2 1 2 1 21 2 00 , 0 , 0 ,e e e e e eG G y G G y G G y� � � � � � � � � and boundaries:  

1 1 0 2 2 3 0 3

1 2 3 3

, ;
.

e e e e e e e e

e e e e e

G D G S G G
G D S

�� �� � �    � � �  �   �
� ��� � �  �   �  �  

Assume the following regularity condition: For some constant 1c ,

1
8 1 3 1 1( ) : ( ) / ( ) ( ) ; 0, 0c K y K y c y on near O c �� � " � � � � .

Definition 2. 6. A solution ( , )u u x y�  of Problem (M) is called regular solution if it (1). satisfies 

equation (2.1) in 0G except G ;

(2).  is continuous in G; 

(3). has continuous first derivatives in G and 1 2, ( )both open� �   with the possible exception of the 

points 1 2,O O , in whose neighborhoods they may have poles of order less than  1: 

& ', , 0 1; 0 ( 1, 2), ,i

x y i i iu u o O P O P i P G and? ?�� " � < � �

(4). has continuous second derivatives in ( 1, 2)iG i �  with the possible exception of points on the 
parabolic curve, in whose neighborhoods they may not exist. 

Uniqueness Theorem  2. 7. If one assumed conditions ( ) : ( 1, 2,3,4,5,6,7,8)ic i � , then  the above 
Problem  (M) has at most one regular solution in  domain  G.  

In  1990, Rassias  [39] introduced the bi-elliptic, bi-hyperbolic and bi-parabolic 
equation: ( ) ( , ) ( , )xx yyLu K y u u r x y u f x y� � � �  with two parabolic lines: 0 , 1y y� � .These
boundary value problems with boundary conditions on the exterior boundary of a mixed type doubly-
connected domain generalize his above uniqueness results [31]. He  noted that this doubly-connected 
domain 1 1 2 2D G G G G� ��      consisted of the following four regions: 

1 1( {( , ) : 1, 1})G R x y x y$ � � � :”upper elliptic region” , 

1 1( {( , ) : 1, 0})G R x y x y� �$ � � � :”lower elliptic region” , 

2 2( {( , ) : 0 1,0 1})G R x y x y$ � � � � � :”right hyperbolic region” , 

2 2( {( , ) : 1 0,0 1})G R x y x y� �$ � � � � � � :”left hyperbolic region”, 

with “boundaries”:  1 0 1 1G AB� � �   , 1 0 2 2G A B� �� � �  ,

2 1 1 2 2 1 1 2 2G O B O B� �� � �  �  �  �   , 2 1 1 2 2 1 1 2 2G O O� � �� � 5  5  5  5  @  @ ;

“edge” points: 1 2 1 2 1 2(0,1), (0,0), ( 1,1), ( 1,0), (1,1), (1,0)A � A � @ � � @ � � B � B � ;

“parabolic” segments: 1 1 {( , ) : 1, 1}x y x y@ B � � � :”upper parabolic segment”,  

2 2 {( , ) : 1, 0}x y x y@ B � � � :”lower parabolic segment”,  

1 1 {( , ) : 0 1, 1}x y x yA B � � � � :”right upper parabolic segment”, 

2 2 {( , ) : 0 1, 0}x y x yA B � � � � :”right lower parabolic segment”, 
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1 1 {( , ) : 1 0, 1}x y x yA @ � � � � � :”left upper parabolic segment”, 

2 2 {( , ) : 1 0, 0}x y x yA @ � � � � � :”left lower parabolic segment” ; 

“elliptic  star-liked ” arcs: 0� :”connecting points 1 1,@ B  in 1G ”, 0�� :”connecting points 2 2,@ B  in 1G� ”; 
and  eight “hyperbolic characteristic” lines of  the above bi-hyperbolic equation:  

1 1 1 1 2 11 0
( ) : ( ) , ( ) : ( )

y y
x K t dt x K t dt�� � A C � � � � � A C � �� � ;

2 1 2 2 2 21 1
( ) : 1 ( ) , ( ) : ( )

y y
x K t dt x K t dt�� � B C � � � � � B C � � �� � ,

 where 1 1 1�C � � ��  and 2 2 2�C � � �� ,  as well as: 

1 1 1 1 2 11 0
( ) : 1 ( ) , ( ) : 1 ( )

y y
x K t dt x K t dt� � �5 � @ C � � � � 5 � @ C � � � �� � ;

2 1 2 2 2 21 0
( ) : ( ) , ( ) : ( )

y y
x K t dt x K t dt� � �5 � A C � � 5 � A C � � �� � ,

 where 1 1 1� �C � 5 �5  and 2 2 2� �C � 5 �5 . Then Rassias  stated and proved: 

Uniqueness Theorem  2. 8. If one assumed  the star-likedness conditions: 

0

0

( 1) 0
0

xdy y dx on
xdy ydx on
� � # ��

� �� # ��
,

and the coefficient conditions: 

1

2 2

1

2 ( 1) 0
0

2 0

x y

x

x y

r xr y r in G
r xr in G G
r xr yr in G

� � � � "
> �� "  �
> �� � "�

  ; 0 ( )r on Int D" ; 10K in G� �  ; 10K in G� �� ,

where 1 1 2 2( )Int D � �� �  �  5  5   (interior of D), as well as  boundary conditions: 

0 ( )u on Ext D� ,where 0 0 2 2 1 1( )Ext D � � �� �  �  �  �  5  5   (exterior of D), such that: 

( ) ( )D Ext D Int D� �   (boundary of  D), then this  Tricomi problem would have at most one quasi-
regular solution in D. 

Similarly Rassias investigated  the pertinent Frankl problem. Besides he considered the following 
interesting special case: 

( ) sgn( ( 1)) 1 ( )K K y y y y y k y �� � � �  ( 0, 0 ; ( ) 0k k y �� � � � )  in  D. 

Besides Rassias [33]  (in 1985) investigated the pertinent Bitsadze-Lavrent’ev problem with two 
parabolic lines of degeneracy and two elliptic arcs. In 1990, he [40] established the well-posedness of  
Tricomi-Bitsadze-Lavrentjev problem for the “generalized Chaplygin equation” with discontinuous 
coefficient: ( ) sgn( )K y y� .

In  1990, Rassias [41] suggested twelve open problems, most of which still remain unsolved, and 
variations of which are stated at the end of this work. 

In  1992 , Rassias [43] considered the  elliptic-hyperbolic and parabolic equation 
( ) ( , ) ( , )xx yyLu K y u u r x y u f x y� � � � ,in a  simply-connected domain G bounded by an elliptic 

arc 1g ( 0)for y � : connecting points :  (1,0)A � ; ( 1,0)A� � �   and  by two hyperbolic 
characteristic curves: 
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2 0
( ) : 1 ( )

y
g PA x K t dtD � � ��  ; 3 0

( ) : 1 ( )
y

g A P x K t dt�D � � � �� ( 0)for y � ,

 intersecting at  
0

(0, ), ( 0) : ( ) 1py

p pP P y where y K t dtD � � � �� , proved  a uniqueness 

theorem on quasi-regular solutions in 2 ( ) ( )C G C G�  and  the pertinent existence theorem on weak 

solutions in 2 ( )L G , and  established the well-posedness of the Tricomi problem: consisting in finding 
a function ( , )u u x y� which satisfies above mixed type equation in G and boundary condition: 

1 20u on g g�  .

In  1993 , J. M. Rassias [44] considered the  2D elliptic and hyperbolic and parabolic partial differential 
equation: ( ) ( , ) ( , )xx yyLu K y u u r x y u f x y� � � � , in a  simply-connected domain G bounded by an 

elliptic arc 1g ( 0)for y � : connecting : (1,0)A � ; ( 1,0)A� � �   and  by two hyperbolic 
characteristic curves:  

2 0
( ) : 1 ( )

y
g PA x K t dtD � � ��  ; 3 0

( ) : 1 ( )
y

g A P x K t dt� �D � � � �� ( 0)for y � ,

intersecting at  
0

(0, ), ( 0) : ( ) 1py

p pP P y where y K t dtD � � � �� , as well as 

 by characteristic curves:  

2 0
: ( )

y
g x K t dt� � ��  ; 3 0

: ( )
y

g x K t dt� � �� ( 0)for y � ,

proved a uniqueness theorem on quasi-regular solutions in 2 ( ) ( )C G C G�  and  the pertinent 

existence theorem on weak solutions in 2 ( )L G , and therefore he established the pertinent well-
posedness of solutions of the Tricomi problem: consisting in finding a function ( , )u u x y� which 

satisfies above mixed type equation in G and boundary condition: 1 3 30u on g g g��   .

In  1997 and 1999, Rassias  ([50]-[53])  introduced the  elliptic-hyperbolic and parabolic equation: 

1 2( ) ( ( ) ) ( , ) ( , )xx y yLu K y u K y u r x y u f x y� � � � , in a  simply-connected domain G bounded by an 

elliptic arc 1g ( 0)for y � : connecting : (1,0)A � ; ( 1,0)A� � �   and  by two characteristic curves: 

2 0
( ) : 1 ( )

y
g PA x K t dtD � � ��  ; 3 0

( ) : 1 ( )
y

g A P x K t dt�D � � � �� ( 0)for y � ,

 intersecting at  
0

(0, ), ( 0) : ( ) 1py

p pP P y where y K t dtD � � � �� , proved a uniqueness 

theorem on quasi-regular solutions in 2 ( ) ( )C G C G�  and  the pertinent existence theorem on weak 

solutions in 2 ( )L G , and therefore, Rassias  established the well-posedness of the Tricomi problem: 
consisting in finding ( , )u u x y� which satisfies above mixed type equation in G and boundary 

condition: 1 20u on g g�  .

Techniques to prove the existence of weak solutions :

Let us consider the relative adjoint equation:  

1 2( ) ( ( ) ) ( , ) ( , )xx y yL w K y w K y w r x y w f x y� � � � � ,

and the adjoint boundary condition: 1 30w on g g�  .

Then  Rassias introduced the following preliminary concepts: 
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2 ( ) | ( , ) : ( )
( )

u p p x y G G G u u p
C G

is twice continuously differentiable in G
� �� � �  � �> >� � �

�> >� �
;

1 22 ( )
max ( ) | : 2

C G
u D u p p G � � " , such that 

1 2 1 2 1 2( , ) : , 0,a a a a a  � � � �  ; 2 2( , ) , ( , ) ,p x y and p x y� � � �� � and

& '1 2
1/ 2

, , , ,p x y p p xx yy p p p  � � � � ;

& ' 1 2
1 2 1 2, , ( ) ( )( ),D D D u p D D u p

x y
 � �

� � �
� �

for sufficiently smooth functions ; 

2

1/ 2
2 22

( )
( ) | ( ) , ( ) ,

G L G
G G

L G u u p dp u u u p dp
� � 6 7

� � E � �� � 8 9
� � : ;
� �

with dp dxdy� ; 1 22
1 2( ) ( ) : 0D L u C G u on g g� � �  ,

the domain of the formal operator L, and 1 22
1 3( ) ( ) : 0D L w C G w on g g� � � �  ,

the domain of the adjoint operator L� ; 1 22 2
2 ( ) | (.) ( ), 2W G u D u L G � � " , and 

the complete normed Sobolev space with norm 

2 2 2 2
2

1/ 2
2 22 1/ 2

2 ( ) ( ) ( ) ( )
2 2

( )
W G L G L G L G

u u u D u D u 

 � "

6 7
� � � � 8 98 9

: ;
F F ;

2

2
2 . 2

( , ) ( ) : ( ) . ;W G bd D L closure of D L with norm�

2

2
2 . 2

( , ) ( ) : ( ) . ,W G bd D L closure of D L with norm� �� or equivalently: 

1 22 2 2
2 2 20 0

( , ) ( ) : , , ( , )W G bd w W G Lu w u L w for all u W G bd� �� � � � .

Definition 2. 9.  A function  2( ) ( )u u p L G� �  is weak solution of Tricomi problem if   

0 0
, ,f w u L w�� , holds for all  2

2 ( , ).w W G bd ��

Criterion  2. 10. 

(i). A necessary and sufficient condition for the existence of a weak solution of Tricomi problem is that 
the following a-priori estimate: 

0 0
w C L w�" ,holds for all 2

2 ( , )w W G bd ��  for some positive 

constant C. (ii). A sufficient condition for the existence of a weak solution of Tricomi problem is that 
the following a-priori estimate: 

1 0
w C L w�" ,holds for all 2

2 ( , )w W G bd ��  for some positive 

constant C,  where    

2

1/ 2
2

0 ( )
( )

L G
G

w w w p dp
6 7

� � 8 9
: ;
� ; & '

1/ 2
22 2

1
( ) ( ) ( )x y

G

w w p w p w p dp
6 7
� � �8 9
: ;
� ,

with
1 0

w w#  for all 2
2 ( , )w W G bd �� .
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Rassias quoted that both the Hahn-Banach theorem and the Riesz representation theorem would  
play an important role if above criterion 1 were not employed. For the justification of the definition of 
weak solutions he  applied Green’s theorem and classical techniques in order to show that: 

1 20f Lu and u on g g� �  .

Rassias proved the following theorems for the well-posedness of  Tricomi problem:  

Existence Theorem  2. 11.   Let us consider the Tricomi problem:  

1 2( ) ( ( ) ) ( , ) ( , )xx y yLu K y u K y u r x y u f x y� � � �   ; 1 20u on g g�  .

Also consider the above-mentioned simply-connected domain G and  conditions: 

& '1 :R 2 1 2 20 ; ( ) 0 ; 0 ( 1,2)ir on g K K on g K i in G� �� � � �  ; 

& '2 :R 1 2 1( ) ( ) 0 : " "x c dy y c dx star likedness on g� � � # �  ; 

1 2 1 11
3

1 2 1 12

4(3 ( ) ( ) ) 4 0 0
( ) :

4(2 ( ) ) 4 0 0
x y

x y

r x c r y c r for y
R

r x c r c r for y
G H

G H
� � � � � " � � #�

� � � � � "� � "�

& '4 :R
2

211 2 1 2 1
2

222 1 2 1

0 0( ) ( )
0 0( )
for yK y c K x c
for yc K x c

HG
HG

� � #� � � � � #
� � � "� � #�

   ; 

& '5 :R
2

312 2 2 3 2
2

322 2 2 3 2

0 0( ) ( )
0 02 ( )
for yK y c K y c
for yK c K c

HG
HG

�� � #� � � � #
� � � "� � #�

   ; 

& '6 :R 2 0 20
( ) ( ) 0

y
K t dt c K y c on g� � � � ��  , 

where 0 ( 1,2,3; 1,2)ij i jH � � � ; 1 0( 1, 2); ; ; 1iK i r f are sufficiently smooth c c� � � ,

and 0 2; ; ( 1, 2,3)ic c iG �  are positive constants. 

Then there exists a weak solution of the above pertinent Tricomi problem. 

Uniqueness Theorem  2. 12. If  one considers  the mixed domain G, 

the  star-likedness condition: 

1( ) :R 1( 1) 0x dy ydx on g� � # ,

and the coefficient conditions: 

2( ) :R
2 ( 1) 0 0

( 1) 0 0
x y

x

r x r yr for y
r x r for y
� � � � #�

� � � � "�
  ; 30r on g� ;

3( ) :R

1

1

1

2

( ) 0 0
(0) 0
( ) 0 0
( ) 0

K y whenever y
K
K y whenever y
K y everywhere in G

� ��
> �>
� � �>
> ��

;

4( ) : ( ) 0 ( 1,2)iR K y i in G� � � ,

where ( 1,2),iK i �  and  r  are once-continuously differentiable and  f is continuous, then this  Tricomi 
problem (T)  has at most one quasi-regular solution in G. 
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In  2002, Rassias [54] introduced the elliptic, bi-hyperbolic and bi-parabolic equation  

1 2 1 2( )( ( ) ) ( )( ( ) ) ( , ) ( , )x x y yLu K y M x u M x K y u r x y u f x y� � � � ,

which is parabolic on both segments: 0, 0 1 ; 0, 0 1x y y x� � " � � " ,

elliptic in the euclidean region: & '1 22, ( ) : 0, 0eG x y G x y� � $ � �� , and hyperbolic  in both 

regions : & '1 2
1

2, ( ) : 0, 0hG x y G x y� � $ � ��  ; & '1 2
2

2, ( ) : 0, 0hG x y G x y� � $ � �� ,

with G  the simply-connected mixed domain of our pertinent Tricomi problem. 

In fact, Rassias  considered: 

( , )f f x y�  continuous in G, ( , )r r x y� once-continuously differentiable in G,  

( ) ( 1,2)i iK K y i� �  are once-continuously differentiable for . /1 2,y k k� � :

1 2 1 21 2inf : ( , ) ; sup : ( , )k y x y G k y x y G� � � � � ,and ( ) ( 1,2)i iM M x i� �

are once-continuously differentiable for 

. /1 2,x m m� � : 1 2 1 21 2inf : ( , ) ; sup : ( , )m x x y G m x x y G� � � � � .

Besides  he  assumed the following conditions: 

1 1 1 1

0 0 0 0
( ) 0 0 ( ) 0 0

0 0 0 0

for y for x
K K y for y and M M x for x

for y for x

� � � �� �
> >� � � � � �� �
> >� � � �� �

   , 

as well as : 2 2 2 2( ) 0 ( ) 0K K y and M M x everywhere in G� � � �  ,so that   

1 1

2 2

0 0 0 0
( ) ( )( ) 0 0 ( ) 0 0
( ) ( )

0 0 0 0

for y for x
K y M xK K y for y and M M x for x
K y M x

for y for x

� � � �� �
> >� � � � � � � �� �
> >� � � �� �

  . 

Also Rassias  supposed that :
0 0

lim ( ) lim ( )
y x
K y and M x exist in G

< <
;

0 0, 0
( ) ( ) 0 0; 0

0 0, 0; 0, 0

for x y
KM K y M x for x y

for x y x y

� � ��
>� � � ��
>� � � � ��

 . 

Rassias quoted  that it is not considered here: 0 0, 0KM for x y� � � , and the above mixed 
type equation degenerates its order at the origin O(0,0). Besides Rassias considered the boundary 
G�  of the domain G formed by curves: A curve  1g  which is the elliptic arc lying in the first quadrant: 

0, 0x y� � and connecting the points (1,0) (0,1)A and B ;two characteristic arcs   

2 31 0 0 0
: ( ) ( ) , : ( ) ( ) ,

x y x y
g M t dt K t dt g M t dt K t dt� � � � �� � � �
descending from the points (1,0) (0,0)A and O  until they terminate at a common point of 

intersection 
1 11( , )p pP x y  in the fourth quadrant : 0, 0x y� � ; and two hyperbolic characteristic arcs  

2 3and� � :

92 International Journal of Applied Mathematics & Statistics



2 30 1 0 0
: ( ) ( ) , : ( ) ( ) ,

x y x y
M t dt K t dt M t dt K t dt� �� � � � �� � � �

emanating from the points (0,1) (0,0)and OB  until they terminate at a common point of 

intersection 
2 22 ( , )p pP x y  in the second quadrant : 0, 0x y� � . Rassias assumed  the boundary 

condition: 1 2 20u on g g ��    , and suggested the following Problem (T): The Tricomi problem, 

or Problem (T) consists in finding a function ( , )u u x y� which satisfies the above equation in  G and 

the boundary condition on 1 2 2g g �   which is a “continuous” part of the boundary G�  of  G. 

Definition 2. 13. A function ( , )u u x y�  is a quasi-regular solution of Problem (T) if : 

(i) 2 ( ) ( ), ;u C G C G G G G� � �  �

(ii)   the Green’s theorem (of the integral calculus) is applicable to the integrals 

,x y
G G

u Ludxdy u Ludxdy�� �� ;

(iii) the boundary and region integrals, which arise, exist; 

(iv) u satisfies the above mixed type equation in G and the boundary condition on 1 2 2g g �  .Then
Rassias  stated and proved: 

Uniqueness Theorem  2. 14. If  one  assumes  the above conditions in the mixed domain G, and the  
star-likedness condition:  10xdy ydx on g� # , and  conditions:  

2 0 0, 0
0 0, 0
0 0, 0

x y

x

y

r xr yr for x y
r xr for x y
r yr for x y

� � � � # #
> � � # "�
> � � " #�

  ; 3 30r on g ��  ;

2 2

2 2

( ) ( ) 0 0
( ) ( ) 0 0
( ) 0 ; ( ) 0 , 1, 2i i

K y yK y for y
M x xM x for x
K y in G M x in G for i

�� � #�
> �� � #�
> � �� � ��

 , 

 then this  Tricomi problem (T)  has at most one quasi-regular solution in G. 

Case  1 1 2 2sgn( ) ; sgn( ) ; 1K y M x K M� � � �  : was investigated (in1984) [32].  

3. THE  TRICOMI-PROTTER  PROBLEM 

In  2007, Rassias [55] introduced the ( 2)nD n � ) parabolic elliptic- hyperbolic- parabolic partial 
differential equation 

1 2
1

( )( ) ( ( ) ) ( , ) ( , )
i i

n

x x t t
i

Lu K t u K t u r x t u f x t
�

D � � �F                                    (3.1)                         

which is parabolic on  0t � ; elliptic in 0t �  ;and hyperbolic in 0t � , for 1 2( , ,..., )nx x x x� ,

and 2 2(0) 0 ; ( ) 0K K t� �  for all real 0t I , as well as 1(0) 0K � ; 1( ) 0K t �  for 0t � ;and 

1( ) 0K t �  for 0t � ,as well as ( ) /t t� � � .

Besides Rassias investigated the pertinent Tricomi - Protter problem of this equation. Furthermore he 
established uniqueness of quasi-regular solutions for the afore-mentioned Tricomi – Protter problem. 
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Rassias introduced the parabolic elliptic-hyperbolic equation (3.1) in a bounded simply-connected 

mixed domain G with a piecewise smooth boundary 1 3 4G S S S� �   , where ( , )f f x t�  is 

continuous in G, ( , )r r x t�  is once-continuously differentiable in G, ( ) ( 1,2)i iK K t i� �  are 

monotone increasing  continuously differentiable for 1 2[ , ]t k k� �  with 1 inf{ : ( , ) }k t x t G� � �  and

2 sup{ : ( , ) }k t x t G� � , for 1 2( , ,..., )nx x x x� . Let us denote 1 2( ) ( ) ( )K t K t K t� . Rassias quoted  

that the boundary G�  of  a bounded simply-connected region  G  of 1( 2)n n� ��  is formed by the 

following surfaces: A piecewise smooth surface 1S : ( , ) 0x tJ �  lying in the elliptic region 

{( , ) : 0}G x t G t� � � �  which intersects the parabolic  plane 0 {( , ) : 0}G x t G t� � �  in 1x � ;two

characteristics 3S , 4S  of (3.1):  3 : ( , ) 1 0S x t x �K D � � � , and 4 : ( , ) 0S x t x �L D � � , lying in 

the hyperbolic region {( , ) : 0}G x t G t� � � �  and satisfying the conditions 

3

2 2
1 2

1
( )[ ( / ) ] ( )( / ) | 0 

n

i S
i

K t x K t t
�

�K � � �K � �F  ; 
4

2 2
1 2

1
( )[ ( / ) ] ( )( / ) | 0

n

i S
i

K t x K t t
�

�L � � �L � �F ,

where  2

1

n

i
i

x x
�

� F   and  
0

( ) ( 0)
t

K d� 
 
� � � ��  with  1 2( ) ( ) / ( ) 0K K K
 
 
� �  for  

1( ) 0K 
 �  and 2 ( ) 0K 
 �  if  0
 � . Besides 3S  ascends from a fixed point (0, ), 0p pP t t �  and 

intersects the plane 0G  in  1x �  for  0t � , and 4S  descends from the  fixed origin O(0,0), and 

intersects  3S  for  0t � : pt t� . Furthermore if G is bounded, instead of  3S , by a piecewise smooth 

non-characteristic surface  3S � : ( , ) 0x tM �  which intersects the plane 0G  in 1x �  and satisfies the 

non-negative condition :  
3

2 2
1 2

1
( )[ ( / ) ] ( )( / ) | 0

n

i S
i

K t x K t t �
�

�M � � �M � #F ,then the surface 3S �  lies 

inside the characteristic 3D-space bounded by the characteristic surfaces  3S  and 4S  of (3.1). Let us 
assume the boundary condition                                    

0u �    on 1 3S S   .                                                           (3.2) 

If   3S  is replaced by 3S � , then the boundary  condition (3.2) is replaced accordingly. Rassias named 

the following problem after Protter (1977), because Protter was the pioneer investigator for a class of  
Goursat  type  problems  for the wave equation in dimensions greater than 2 , fundamental for the 
Tricomi problem,  and his  results today consist a cornerstone in boundary value problems of mixed 
type partial differential equations.  

According to Protter ([Bull. Amer.Math. Soc. ,1 (3) (1979), 534-538] ; [25] ): 

“very little is yet known of the nature of solutions of equations of mixed type when the number of 
independent variables is more than two, and that  the task of studying mixed type boundary value 
problems  in three and more dimensions  appears formidable  and  more remote.”   

Rassias ([20], [23-26], [36]) generalized the Tricomi and Frankl problems in  n ( 2)�   dimensions 

based on Protter’s   original  proposal to him. This generalization in multi-dimensional regions was a 
breakthrough for the Tricomi and Frankl problems in domains of higher than two dimensions for the 
generalized multi-dimensional Chaplygin equation with more general coefficients. Rassias  now 
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generalizes even further his own results obtained  in  his Ph. D  thesis (U. C., Berkeley, 1977), 
through the following investigation:  

The Tricomi - Protter problem, or  Problem  (TP)  consists in finding a function   ( , )u u x t�  which 
satisfies the mixed type partial differential Eq. (3.1) in G and the boundary condition  (3.2) on  the 
surface portion 1 3S S  of the boundary G�  of  G. 

If 3S  is replaced by 3S� , the Tricomi - Protter problem, or  Problem  (TP)   is recalled accordingly as 
the Frankl - Protter problem, or  Problem  (FP) . 

Definition  3. 1. A function ( , )u u x t�  is a quasi-regular solution of Problem (TP)  if the following two 
conditions hold: 

(i)  the Green’s theorem (of  the integral calculus) is applicable to the integrals 

G

u Lu dxdt�� ,
ix

G

u Lu dxdt�� ( 1,2,..., )i n�  and t
G

u Lu dxdt�� ;

(ii)  the boundary surface and region integrals, which arise, exist; and (iii)  u  satisfies the mixed type 
Eq. (3.1) in G and the boundary condition  (3.2) on  1 3 4G S S S� �   .

Besides Rassias stated and proved the following general nD  uniqueness theorem: 

Uniqueness Theorem  3. 2.  Consider the parabolic elliptic- hyperbolic Eq. (3.1) and the boundary 
condition (3.2), as well as  the afore-described bounded simply-connected mixed domain G  of the (x, 
t) -  euclidean space 1( 2)n n� �� . Besides  assume that 2 2(0) 0 ; ( ) 0K K t� �  for all real 0t I , as 

well as 1(0) 0K � ; 1( ) 0K t �  for 0t � ;and 1( ) 0K t �  for 0t � .Furthermore suppose the conditions: 

1( ) :R The piecewise smooth surface 1S : ( , ) 0x tJ �  is  ” strongly star-like”,  

such that    
11

1
( ) | 0

n

i i n S
i
x c t	 	 �

�

� #F  for  0t � ,where 1 2 1( , ,..., , )n n	 	 	 	 	 ��  is the normal unit 

vector on 1 3 4G S S S� �   , and

0

( ) ( ) / ( ) 0
t

c t K d K t
 
� ��   for 0t �   , 1 2( ) ( ) / ( ) 0K t K t K t� � ,

with characteristic surfaces 3S  and 4S  of  equation (3.1) described above ; 

2 2
1

( ) : (2 ) ( ) ( ) 0
i

n

i x t
i

R a nr x r cr K a
�

� �� � � � #F    in  G, 

1 2 1 2[( 1) / 2] [( ( ) ( )) / 4 ( ) ( )]a n K t K t c K t K t�� � �

2 2[( 1) / 2] {[[( ( )) / ( )] 2[( ( )) / ( )]]( / 4)}n K t K t K t K t c� �� � � � ,

0

| ( ) | / | ( ) |
t

c K d K t
 
� �

in G  and ( ) ( ) /d dt� � ;

( 3R ):           1 1
2 2( ) ( ) 0n nR t aK K a K K� �� �� �� � � � �   for 0t � ,

0
( ) ( 0)

t
K d� 
 
� � � ��  for 0t � ;

Int. J. Appl. Math. Stat.; Vol. 13, No. J08,  June 2008 95



4( )R :                   *( )R t � 2K
2

1 12( ( ) / ( )n
n nT t T t� � ��� 0� for 0t � ,

with  a real valued function  1 : ( 2),nT n� < #� �  such that 

1 1( ) 0n nT T t� �� <  as 0t �<   and 
41 1( ) / ( ) | ( 0)n n ST dT t dt R t� �� � � � � ,

and ( , )f f x t�  is continuous in G, ( , )r r x t�  is once-continuously differentiable in G, 

( ) ( 1,2)i iK K t i� �  are monotone increasing  continuously differentiable for 1 2[ , ]t k k� �
with : 1 inf{ : ( , ) }k t x t G� � � , 2 sup{ : ( , ) }k t x t G� � , for 1 2( , ,..., )nx x x x� .

Then the above Problem (TP)  has at most one quasi-regular solution in G. 

Proof . We apply the well known  , ( 1, 2,..., ),ia b i n c�  energy integral method with choices in G: 

1 2 1 2[( 1) / 2] [( ( ) ( )) / 4 ( ) ( )]a n K t K t c K t K t�� � � , i ib x� ,
0

| ( ) | / | ( ) |
t

c K d K t
 
� �

for all 1,2,...,i n� . Then we  use the above mixed type Eq. (3.1) as well as the boundary condition  

(3.2). We assume two solutions  1 2,u u  of the Problem  (TP). Then, we claim that  1 2 0u u u� � �
holds in the domain G. In fact, we investigate 

00 2( , ) 2
G

J lu Lu lu Lu dxdt� � � ��                                              (3.3) 

where   
1

( ) ( ) ( )
i

n

i i x t
i

lu a t u b x u c t u
�

� � �F ; ( ), ( ), ( )i i ia a t b b x c c t� � �  are defined above. Thus 

1 2 0Lu Lu Lu f f� � � � �  in G. We introduce the  new differential identities 

2 2 2
1 1 1 1 1

2
1 1

2 (2 ) 2 (( ) ) ( )

(2 ) 2 ;
i i i i i i i i i

i i i

x x x x x x x x x

x x x

aK uu aK uu aK u aK u K a u

aK uu aK u

� � � �

� �

2 2 2
2 2 2 2 22 (2 ) 2 (( ) ) ( ) ,tt t t t taK uu aK uu aK u aK u K a u� ��� � � �

22 2 ;aruu aru� 2 2
2 2 22 ( ) ( ) ;t taK uu aK u aK u� � � �� �

2 2
1 1 1 1 1

2 2
1 1 1

2 (2 ) ( ) ( ) 2( )

(2 ) ( ) ( ) ( : , : 1, 2,..., );
i jj i j j j i i j j i j

i j j j i i j

i x x i x x x i x x i x x i x x x

i x x x i x x i x x

b K u u b K u u b K u b K u b K u u

b K u u b K u b K u i j i j n

� � � �

� � � I �

2 2
1 1 12 ( ) ( ) ;

i i i i i i ii x x x i x x i x xb K u u b K u b K u� �

2 2
2 2 2 2 22 (2 ) ( ) ( ) 2( )

i i i i ii x tt i x t t i t x i x t i t x tb K u u b K u u b K u b K u b K u u� � � � ;

2 22 ( ) ( ) ;
i i ii x i x i xb ru u b ru b r u� � 2 22 2( ) ;

i ii x t i t xb K u u b K u u� �

2 2
1 1 1 1 1

2 2 2 2
1 1 1 2 2 2

2 (2 ) ( ) ( ) 2( )

(2 ) ( ) ( ) ; 2 ( ) ( ) ;
i i i i i i i i

i i i i

x x t x t x x t x x x t

x t x x t x t tt t t t

cK u u cK u u cK u cK u cK u u

cK u u cK u cK u cK u u cK u cK u

�� � � �

� �� � � � �

2 22 ( ) ( ) ;t t tcru u cru cr u� � 2 2
2 2 22 ( ) ( ) .t tt t t tcK u u cK u cK u� � � �� �
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We note that:  

( ) 2 ( ) 2 ( ) .
i j i j i j

n n n

i j j i x x i j j i x x i j x x
i j i j i j
b b u u b b u u b u u	 	 	 	 	

I � I

� � � �F F F
 Furthermore we employ the classical Green’s theorem of the integral calculus. Therefore if 
dV dxdt� , and dS  the surface element ,we get the fundamental identity 

0=J= 2
G
��

1
[ ( ) ( ) ( ) ]

i

n

i i x t
i

a t u b x u c t u Lu dV
�

� �F

= 2
1 2

1 1

[2 ( ) ( ) ( ) ( ) ]
i i i

n n

i x t x x
i iG

ar b r cr K a K a u dV
� �

� �� � � �F F��

+ 2
1 1 1 1

1

{ [ 2 ( ) ( ) ( ) ]
i j i

n n

i x j x x
i j iG

aK b K b K cK u
� I

�� � � �F F��

+ 2
2 2 2 2

1
[ 2 ( ) ( ) 2 ]

i

n

i x t
i

aK b K cK cK u
�

� �� � � �F

- 1 1
1

2 ( ) 2 ( ) }
j i j i i

n n

i x x x x x t
i j i
K b u u K c u u dV

I �

�F F

+ 2
1

1

( )
n

i i n
iG

b c r u dS	 	 �
��

�F��

+ 2
1 2 1 1 2 1

1 1

{2 ( ) [ ( ) ]}
i i

n n

x i t n x i n
i iG

au K u K u u K a a K dS	 	 	 	� �
� ��

�� � �F F��

+ 2 2
1 1 1 2

1 1

[ ( ) ( )
j

n n n

j j i i n x i i n t
j i j iG

b b c K u b c K u	 	 	 	 	� �
� I ��

� � � � �F F F��

+2 1 2 1 1
1

( ) 2 ( ) ]
i j i

n n

i j j i x x i n i x t
i j i
b b K u u b K cK u u dS	 	 	 	�

� �

� � �F F

= 1 2 1 2 3I I J J J� � � � .                                                                 (3.4)  

We note that: 1 1 1 12 ( ) ( ) ( ) 0
i j

n

i i x j x
j i

A aK b K b K cK
I

�� � � � � �F  for 1,2,...,i n� ,

B � 2 2 2 2
1

2 ( ) ( ) 2 0
i

n

i x
i

aK b K cK cK
�

� �� � � � �F .

Therefore 2 2
2

1

( ) 0
i

n

i x t
iG

I Au Bu dV
�

� � �F�� , because i iA B� � 1 1( ) ( ) 0.
j ii x xK b K c� �

From condition  2( )R ,one gets 2
1 2

1

[(2 ) ( ) ( ) ] 0
i

n

i x t
iG

I a nr x r cr K a u dV
�

� �� � � � � #F�� .

We claim that  1 0J � :

In fact, this is valid  from condition (3.2)  because   
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4 1 2 1| ( , ,..., , ) /S n n	 	 	 	 	 �� � �NL NL
41 2( , ,..., , ) / 1 |n Sx x x N K N K� � � � ,

such that  
0

( ( ) )( 0)
t

N K K K d� 
 
� � � � � � ��  for 0t � ,and

4 1 2 1 2| ( , ,..., , ) ( / , / ,..., / , )
nS x x x t nx x x K� � �NL � L L L L � � , 1NL � �O ,

 characteristic equation: 
4

2 2
1 2

1

( )[ ( / ) ] ( )( / ) | 0
n

i S
i

K t x K t t
�

�L � � �L � �F   holds,  and    

4 4

2
1

1 1 0

[ ] | ( / 1 ){ [ ( ) / ( )]} | 0
tn n

i i n S i S
i i
b c K N K x N K d K t	 	 
 
�

� �

� � � � � � � � �F F � .

The rest of the proof  is based on analogous techniques and the application of the classical Cauchy-
Schwarz-Buniakowski inequality. 

We are now investigating  2J : In fact, let us  note that  4S :

1 1 2 3 2cos cos cos ...cos cos ;n nx � � P P P P� �� 2 1 2 3 2sin cos cos ...cos cos ;n nx � � P P P P� ��                                      

3 1 2 3 2sin cos ...cos cos ;n nx � P P P P� ��                                    4 2 3 2sin ...cos cos ;n nx � P P P� ��                                   
………………………………                                        

2 4 3 2sin cos cos ;n n n nx � P P P� � � �� 1 3 2sin cos ;n n nx � P P� � �� 2sin ;n nx � P �� ,t t�

for [0,2 ), [ / 2, / 2] ( 1,2,..., 2); ; ( ,0]j ij n x and t� 4 P 4 4� � � � � � � �E� .

We consider:              
41 2 2 1 2( , , , ,..., ) ( , ,..., , ) |n n Su t u x x x t� P P P � �

1 2 1 2 2( cos cos ...cos , sin cos ...cos ,..., sin , )n n nu t� � P P � � P P � P� � �� .

Thus
4

2

1 1
|

i j

n n

S x i t t j
i j

du u dx u dt u dt u d u d� P� P
�

� �

� � � � �F F ,such that  
0

( )
t

K d� 
 
� � ��  yielding  

( ) / ( )dt d t K t�� � � . Let us  denote     
4 1 2| ( , , ,..., )i S i nx f t � P P �� .

Thus we obtain  
4

2

1
| ( ) ( ) ( )

j

n

i S i t i j j
j

dx f dt f d f d� P� P
�

�

� � �F   and 

1 2

4 4 4

1 2 1 2

2

/ [ ( cos cos ...cos sin cos ...cos ...

sin ) ] | / | / | ,
n

x n x n

x n t S S S

u t K u u

u u u T u T

� P P � P P

P
� �

�

� � � � � � �

� � � � � � � �

which is the derivative in the direction of the tangent vector  

1 2 1 1 2( , ,..., , ) ( / , / ,..., / , / )n n nT t t t t x t x t x t t t�� � � � � � � � � �

1 2( , ,..., , / ) /nK x x x K� �� � � � � ,

of  u in the direction of one of the generators of 4S ,such that the dot ( )Q  product 

1

1 1
[ ( / ) ( / )] 0

i

n n

i i x i t
i i

T t x t t t	 	
�

� �

Q � � � L � � �L � � �F F .  Therefore, 
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4 11 2 1 2 1 2
1

2 2

| /(1 )[ ( cos cos ...cos

... sin ) ] /(1 ) ( / )

i

n

n

x i t n S x n
i

x n t

K u K u K K K K u

u u K K K u t

	 	 � P P

P

� �
�

�

� � � � �

� � � � � � � � �

F
                (3.5)           

where  

1 2cos cos ...cos n� P P � = 1 1/ 1x K� 	� � � ,…, 2sin 1n nKP 	� � � � .

But
4 1| ( / )S n tdx dS dS	 �� � � � L NL . Hence 

4
| ( / ] ( 1 / ) ( 1 / )S tdS dx K K dx K K J d d dtP �� NL L � � � � � � ,

where  
2

1 1
,

n n

i ji j
dx dx d dP P

�

� �
� R � R ; and

1 2 2( , , ,..., )nJ J t P P P �� =

1 1
1 2 1 1 2

0

( , ,..., , ) / ( , ,..., , ) ( ( ) ) ( ) ( ),
t

n n
n n nx x x x t K K d C K C� P P 
 
 P � P� �
� �� � � � � � � �� where    

& '
2 22

2 2 11
( ) cos (cos ) ... cos cos ( 0)

n
j n

j nj
C P P P P P

�
�

��
� R � � ,

for [ / 2, / 2] ( 1,2,..., 2)j j nP 4 4� � � �   for 2n �  and  J   the Jacobian. 

We note that  ( ) 1, 1 2C for n and nP � � � . Therefore 

4

1| 1 ( )n
SdS K C d d dt� P P ��� � .                                              (3.6) 

Therefore from (3.5)-(3.6), one gets 

4

1
1 2 1 2

1

( ) | ( )( / )
i

n
n

x i t n S
i

K u K u dS K K C u t d d dt	 	 � P P ��
�

�

� � � � � �F .                         (3.7) 

If 1( , ) : nF F x t �� <� �  is a given real function, we find 

4 4

*
2 ( , ) ( , ( ))( / ) ,t

S S

J F x t dS F x t x dx
�

� � NL L� �                                    (3.8) 

where    4S�  is the projection of 4S  into the x-space, such that  

2 1/ 2

1

( )
n

i
i

x x
�

� F ;  and
0

( ) 0
t

x K d
 
� � ��  (or ( )t t x�  ). 

Let us denote  1 2 2( , ,..., )nP P P P �� . Thus  from (3.6) and (3.8)  and denoting 

1 *
4 {( , , ) : 0 , / 2 / 2( 1, 2,..., 2), ( , ) 0}n

jt j n t t� P � 4 4 P 4 � P�% � � " " � " " � � " �� ,

we get

4

4

*
2 1 2

0

1
1 2

0

( ( ) cos cos ...cos ,..., ) 1 /

( ( ) cos cos ...cos ,..., ) ( ) ( )

t

n

t
n

n

J F K d t J K Kdtd d

F K d t t C dtd d


 
 � P P P �


 
 � P P � P P �

�
%

�
�

%

� � � � �

� � �

� �

� �
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 We note that  4%  is the region in the t space�P �  into which the region  4S�  is mapped under the 
following transformation  

1 1 2 3 2cos cos cos ...cos cos ;n nx � � P P P P� �� …; 2sinn nx � P �� .                 (3.9)                   

Let us denote 
1

4 {( , , ) : 0 , / 2 / 2( 1, 2,..., 2),0 ( , )}n
j j n R� P � � 4 4 P 4 � � P��% � � " " � " " � � " "�

the region in the space�P� �  into which either the region  4S�  is mapped under the  transformation  

(3.9)  or  the region  4%  is mapped under  transformation 

0

( )
t

K d� 
 
� � �� .                                                   (3.10)                         

In this latter case the Jacobian is 

/ 1t �� � �  and / ( )d dt K t� � � �  .                                 (3.11)                         

Thus

/ (1/ )dtd d dt d d d d K d d dP � � � P � � P �� � � .                                (3.12)                          

From  the geometry of 4S ,we obtain 

4

1 1
1 | ( / 1 ) 1 ( ) ( )n n

n SdS K K K C d d dt K C d d dt	 � P � P � P � P� �
� � � � � � � � � .

Therefore from the boundary condition (3.2), one proves  

4 4

21 1
2 2 22 ( / ) ( ) ( )n nJ u K K u t C d d dt u a K KC d d dt � P � P � P � P� �

% %

�� � � � � � �� � .

From this and integrating by parts and by virtue of the fact that  
0

lim ( ) 0
t

K t
�<

�  and that  u  vanishes at 

the upper and lower limits of 4S , we get

4

2 1 1
2 2 2( ) [( ) ] ( )n nJ u K K a K K C d d dt � � P � P� �

%

� �� � � �� .                 (3.13)                        

We now investigate 3J :

In fact, from condition 1( )R and  from the boundary condition (3.2) we prove that  

1 2 1 2 1 2

1 3 4 1 3 4

1 3 4

4

3

* 2 2 2 2
1 2 1 1 2

1 1

2
2

( , ,..., , ) ( , ,..., , ) ( , ,..., , )

( ) [ ][ ( ) ] 2 ( / ) ( / 1 )

2 ( / ) ( / 1 )

n n nx x x t x x x t x x x t
S S S S S S

n n

i n i i n
i iS S S

S

J Q u u u u dS Q u u u u dS Q u u u u dS

N K K x c t dS u t K K dS

u t K K dS

	 	 	 	 �

�

   

� �
� � 

� � �

� � � � � � �

# � � �

� � �

F F� �

�

      

=
4

2
22 ( / ) ( ) ( )nu t K C d d dt� P � P

%

� ��                                                (3.14)                          
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where *N  is the normalizing factor, such that  boundary condition  
1

| 0Su �  implies

1 3

* *
1

1
0 | ; ( 1, 2,..., ),

i i

n

S S x i t x i t n
i

du u du u dt u N i n u N	 	 �
�

� � � � � �F ,

 and     [ 2 2
1 2 1

1

n

i n
i

K K	 	 �
�

�F ]|
1

0S #   and   characteristic equation 
3

2 2
1 2 1

1
[ ] | 0

n

i n S
i

K K	 	 �
�

� �F    , 

as well as the quadratic form Q on the boundary  1 3 4 :G S S S� �   

1 1 3 4

* 2 * 2 * *

1 1
( ,..., , ) | 2

n j i j i

n n n

x x t S S S j x t t ij x x i x t
j i j i

Q Q u u u A u B u A u u B u u  
� � �

� � � � �F F F             

= * 2( )N
1 3

2 2
1 1 2 1

1 1
[ ( ) ][ ] |
n n

i i n i n S S
i i
x c t K K	 	 	 	� �  

� �

� � �F F 4

2
22( / 1 ) ( / ) |SK K u t�� � � ,                                                   

# * 2( )N
1

2 2
1 1 2 1

1 1
[ ( ) ][ ] |
n n

i i n i n S
i i
x c t K K	 	 	 	� �

� �

� � �F F 4

2
22( / 1 ) ( / ) |SK K u t�� � �

4

2
22( / 1 ) ( / ) |SK K u t�� � � �  ( 0)# ,

where  on 4 :S

4

*
1 1

1
( ) |

n n

j j j i i n S
j i j

A b b c K	 	 	 �
� I

� � �F F = 2
22 ( / 1 ) 0( 1,2,..., ),jKK K N K x j n� � � # �

4

*
1 2

1
( ) |

n

t i i n S
i

B b c K	 	 �
�

� � �F = 2
2

0

2( / 1 )( ( ) ) 0
t

K K N K K d
 
� � � #� ,

4

*
1( ) |

n

ij i j j i S
i j

A b b K	 	
�

� �F = 22( / 1 ) ( ; , : 1, 2,..., )i jKK K N K x x i j i j n� � � � � ,

4

*
2 1 1

1
( ) |

n

i i n i S
i

B b K cK	 	�
�

� �F = 22( / 1 ) ( 1, 2,..., )iK K K x i n� � � � .

Therefore from  1 0J � , we obtain 

4

2 1 1
4 1 2 3 2 2

2
2

{( ) [( ) ]

2( ) ( )} ( )

n n

n
t

J J J J u aK K a K K

u K C d d dt

� �

� P � P

� �

%

� �� � � # � � �

�

�

where  /tu u t� � � .

 Assuming a real valued function 1 : ( 2),nT n� < #� �  such that 1 1( ) 0n nT T t� �� <  as 

0t< � ;
4 4

1 1
1 1 2 2( ) / [( ) ] | ( ) | ( 0)n n

n n S ST dT t dt K K a K K R t � �� �
� �� � �� � � � � � � � �

from condition 3( )R .From integration by parts and by virtue of the fact that  
0

lim ( ) 0
t

K t
�<

�  and that  

u  vanishes at the upper and lower limits of  
4
,S

one gets that      
4 4

2
1 1( )( ) ( ) 2 ( ) ( )n n tT t u C d d dt T t u u C dtd dP � P P P �� �

% %

� � �� � .
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From this and Cauchy-Schwarz-Buniakowski inequality, as well as: 1( ) 0nT t�� �  on 4 ( 0)S t �  and if  

1 1/n nT T� ��  is integrable, one gets on 4S  that 

4 4

2 2
1 1( )( ) ( ) ( )( ) ( )n nt u C d d dt t u C d d dtP � P P � P� �

% %

� �3 � � 3� �

4

1 1 1 12 ( ) ( ) 2 [ ( ) ][( ( ) / ( )) ] ( )n t n n n tT t u u C dtd d T t u T t T t u C dtd dP P � P P �� � � �
%

� �� �� �

4

2
12[ ( )( ) ( )n t u C P�

%

�" 3� d d dt� P 1/ 2]
4

2 2 1/ 2
1 1[ ( ( ) / ( ))( ) ( ) ]n n tt T t u C d d dtP � P� �

%

�3�  ,

or

4

2
1( )( ) ( )n t u C P�

%

�3� d d dt� P "
4

2 2
1 14 ( ( ) / ( ))( ) ( )n n tt T t u C d d dtP � P� �

%

�3� .

Therefore from this inequality  we find : 

4

2 2
4 2 1[2 ( ) ( )( ) ] ( )n

t nJ K u T t u C d d dt� P � P�
%

�� ��                                  

4

2 2
2 1 12 [ 2( ( ) / ( )]( ) ( ) ( 0)n

n n tT t T t u C d d dt� P � P� �
%

�# O � �� ,

as

[ 2K
2

1 12( ( ) / ( )n
n nT t T t� � ��� ]|

4%
=

4

2
2 1 1 1{[ ( ) 2 ( )] / ( )} | 0n

n n nT t T t T t� � � � %� �� O � � ,

or
* 2

1 2 1 1( ) ( ) 2 0n
n n nT t R t K T T�� � �� �� � � for 0t � ,

which  holds by condition 4( )R ,and the proof of our above theorem is complete.

NOTE: One could easily prove the existence of weak solutions  and thus the well-posedness of the 
Tricomi-Protter problem via well-known techniques ([29],[53]). 

Remarks 3. 3.  

(i). The author  observed that employing a variation of the  , ( 1, 2,..., ),ia b i n c�  energy integral 

method, one obtains the above sufficient conditions ( ) ( 1,2,3)iR i �  for the uniqueness of the quasi-
regular solutions of the Tricomi - Protter boundary value problem (3.1) and (3.2). 

(ii).  If one takes 1 2, 1K K K� �  in this theorem and follows Rassias proof, one establishes the 
uniqueness result of Rassias  Ph. D. dissertation (1977) [20].

(iii).  The following case : 

2 2(0) 0 ; ( ) 0K K t� �  for all real 0t I , as well as 1(0) 0K � ; 1( ) 0K t �  for 0t � ;and 1( ) 0K t �
for 0t � , where the order of the mixed type equation (3.1) is degenerated at 0t � , is analogous in 
investigating  pertinent quasi-regular solutions of (3.1).  

In  2007, J. M. Rassias and A. Hasanov [56] considered the elliptic type equation with singular 
coefficient: 
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& ' 22 0,xx yy zz xL u u u u u u
x

!


 !D � � � � � 0 2 1,� � 1 2 1 2, , ,i! ! ! ! !� � ��

in the domain  & '1 2, , : 0 , ,D x y z x y z� � �E � � �E �E � � �E .

Then they found fundamental solutions of the above equation , expressed through confluent 
hypergeometric functions of Kummer & '3 , ; ; ,H a b c x y from two arguments. Also they proved by 
means of expansion confluent hypergeometric functions of Kummer, that the constructed solutions 
have a singularity of the order 1/ r at 0r< .Besides, if : 2 2! G� �  ,they solved some boundary 
value problems in domain D .

In 2007, A. Hasanov [10] considered the generalized Rassias bi-hyperbolic equation:

( ) 0; , , :m k n k n m
xx yy zzR u y z u x z u x y u m n kD � � � � costant ( 0)� ,

in the field of : & '1 23 , , : 0, 0, 0x y z x y z� � � � �� .

By means of a suitable change of variables he reduced this generalized Rassias equation to a system 
of hypergeometric equations for the function of Lauricella of three variables and found eight linearly 
independent particular solutions of the said system of hypergeometric equations. Besides he found 
properties of these particular solutions by virtue of decomposition of the hypergeometric function of 
Lauricella.  

In  2007, J. M. Rassias and G. Wen [57] focused  their investigation on the oblique derivative problem 
for general second order mixed type equations with a nonsmooth parabolic degenerate line, which 
included the famous Tricomi problem as a special case. First, they gave the formulation of the above 
problem, and then proved the solvability of the pertinent problem for the mixed equations with 
nonsmooth degenerate line. 

Besides they introduced a new notation, such that the second order equation of mixed type could be 
reduced to the mixed complex equation of first order and then they used  the advantage of the 
complex analytic method ; otherwise, this method could not be employed.  

In 2007, G. Wen, D. Chen and X. Cheng [65] investigated: 

The General Tricomi-Rassias (or  GTR) problem for the generalized Chaplygin equation. This is one 
general oblique derivative problem that includes: The  exterior Tricomi-Rassias Problem  as a special 
case. The investigation of these results are established by the employment of a new method. In 2007, 
G. Wen [66] has recently written an excellent book in mixed type equations.  

 Additional references are the following: ([3],[6],[11-13],[15],[18],[29-30],[34-35],[38],[42],[45-49],[51-
52],[58],[61]).

4. Open Problems on  Mixed Type Equations and  Systems 

Let us suggest the following twelve open problems: 

Problem 4. 1. An open question concerns the regularity of solutions for the boundary value problems 
of mixed type in the sense of Tricomi and Frankl. 

Problem 4. 2. An open question remains of proving the well-posedness of regular solutions without 
restrictions on the functional coefficients or the geometrical size or the shape of the mixed domain. 

Problem 4. 3.  No serious work has been established on nonlinear initial and boundary value 
problems of mixed type in three and more dimensions. 
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Problem 4. 4.   The problem concerning the solution of elliptic systems in a domain on the boundary 
of which the type degenerates is not sufficiently investigated. 

Problem 4. 5. Little is known about the Cauchy problem for hyperbolic equations of order higher 
than two with boundary conditions on the curve of parabolic degeneracy. 

Problem 4. 6. The correct statement of the problem for equations of mixed type in multi-dimensional 
regions still remains to be a very intricate mathematical problem. 

Problem 4. 7.  The study of higher order partial differential equations and systems of partial 
differential equations of mixed type requires much more investigation. 

Problem 4. 8. It would be very interesting to clear up the question whether there is an  extremal 
principle for the initial and boundary value problems of mixed type.  

Problem 4. 9. One of the most important problems of mathematical physics is the  

investigation of  the properties of solutions of partial differential equations of mixed type with boundary 
conditions in the sense of Tricomi and Frankl. 

Problem 4. 10. To consider regions  of mixed type multi-connected with parabolic lines of degeneracy 
replaced by arbitrary curves (not necessarily straight lines) is a question of a very high demand and 
difficult to handle. 

Problem 4. 11.  The existence problem for regular transonic flow around given general profile with 
given velocity at  E  is very difficult to be solved completely. 

Problem 4. 12.  To solve the Tricomi, Frankl and Bitsadze-Lavrent’ev  problems for any one of  the 
following eight pertinent mixed type partial differential equations: 

2 2( ) ( , ) ( , ); ( 1) ( , ) ( , )xx yy xx yyy x u u r x y u f x y x y u u r x y u f x y� � � � � � � � � ;

2 2 2( ) ( , ) ( , ); ( 1) ( , ) ( , )xx yy xx yyy x u u r x y u f x y x y u u r x y u f x y� � � � � � � � � ;

( ) ( , , ) ( , , );xx yy zzz u u xu r x y z u f x y z� � � � ( ) ( , , ) ( , , )xx yy zzz u u xu r x y z u f x y z� � � � ;

( ) ( ) ( , , ) ( , , );xx yy zzz y u z x u u r x y z u f x y z� � � � � �

sgn( ) sgn( ) ( , , ) ( , , )xx yy zzz y u z x u u r x y z u f x y z� � � � � � .
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