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ABSTRACT. We introduce the notions of power and Euler-Lagrange norms by replacing the
triangle inequality, in the definition of norm, by appropriate inequalities. We prove that every
usual norm is a power norm and vice versa. We also show that every norm is an Euler-Lagrange
norm and that the converse is true under certain condition.
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1. I NTRODUCTION AND PRELIMINARIES

We introduce the notions of power norm and Euler-Lagrange by replacing the triangle in-
equality, in the definition of norm, by interesting inequalities. The reader is referred to [2] for
undefined terms and notations.

We shall need the following lemma [1]. For the sake of completeness we state its proof.

Lemma 1.1. LetX be a real or complex linear space. Let‖ · ‖ : X → [0,∞) be a mapping
satisfying (1) and (2) in the definition of aq-norm. Then‖ · ‖ is a norm if and only if the set
B = {x | ‖x‖ ≤ 1} is convex.

Proof. If ‖ · ‖ is a norm, thenB is clearly a convex set. Conversely, letB be convex and
x, y ∈ X . We can assume thatx 6= 0, y 6= 0. Puttingx′ = x

‖x‖ andy′ = y
‖y‖ we havex′, y′ ∈ B.

Now λx′ + (1− λ) y′ ∈ B for all 0 ≤ λ ≤ 1. In particular, forλ = ‖x‖
‖x‖+‖y‖ we obtain

‖ x

‖x‖+ ‖y‖
+

y

‖x‖+ ‖y‖
‖ = ‖λx′ + (1− λ) y′‖ ≤ 1.

So that‖x + y‖ ≤ ‖x‖+ ‖y‖.

2. POWER NORM

We start this section with the definition of power norm by using a more general inequality
than the triangle inequality.

Definition 2.1. Let X be a real or complex linear space,q, p, r be non-negative fixed numbers
such thatq ≥ 2 and p

r
= α +

√
α2 − 1 with α = 2q−1 − 1. A mapping‖ · ‖ : X → [0,∞) is

called a power norm onX if it satisfies the following conditions:

(1) ‖x‖ = 0 ⇔ x = 0,
(2) ‖λx‖ = ‖λ‖‖x‖ for all x ∈ X and all scalarλ,

(3) ‖x1+x2‖q

p+r
≤ ‖x1‖q

p
+ ‖x2‖q

r
, for all x, y ∈ X .

Remark 2.1. Let q ≥ 2 be given. The conditionp
r

= α +
√

α2 − 1, whereα = 2q−1 − 1
implies thatp

r
satisfies the equationx2 + (2 − 2q)x + 1 = 0, which is converted, in turn, to

(p + r)2 = 2qpr.

Our first result reads as follows.

Proposition 2.1. Every usual norm is a power norm.

Proof. The functionf(t) = 1
p

+ tq

r
− (1+t)q

p+r
has the nonnegative derivativef ′(t) = q

r
tq−1 −

q
p+r

(1+t)q−1 on the interval[1,∞) and thus it is monotonically increasing. In fact, the condition
p
r
≥ α implies that fort ≥ 1, we have 1

q−1
√

1+ p
r
−1

≤ 1 ≤ t and so(1 + 1
t
)q−1 ≤ p

r
+ 1 or

1
r
tq−1 ≥ 1

p+r
(1 + t)q−1.

Thereforef(t) ≥ f(1) = 1
p

+ 1
r
− 1

p+r
2q ≥ 0 for all t ≥ 1. Note that1

p
+ 1

r
− 1

p+r
2q ≥ 0

holds wheneverpr2q ≤ (p + r)2.

Thus 1
p

+
(
‖y‖
‖x‖ )q

r
−

(1+
‖y‖
‖x‖ )q

p+r
≥ 0 whenever‖x‖ ≤ ‖y‖. Therefore‖x+y‖q

p+r
≤ (‖x‖+‖y‖)q

p+r
≤

‖x‖q

p
+ ‖y‖q

r
for all x, y ∈ X . It follows that‖.‖ is a power norm.

Using some ideas of [1], we prove our second result.

Theorem 2.2.Every power norm is a usual norm.
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Proof. We shall show thatB = {x : ‖x‖ ≤ 1} is convex. Letx, y ∈ B. Then we have

‖x + y‖q ≤ (p + r)

(
‖x‖q

p
+
‖y‖q

r

)
≤ (p + r)

(
1

p
+

1

r

)
= 2q,

whence‖x+y
2
‖q ≤ 1, so 1

2
x +

(
1− 1

2

)
y ∈ B. Thus if

A :=

{
k

2n
| n = 1, 2, . . . ; k = 0, 1, . . . , n

}
,

then for eachλ ∈ A we haveλx + (1− λ) y ∈ B.
Let 0 ≤ λ ≤ 1 andz = λx + (1− λ) y. SinceA is dense in[0, 1], there exists a decreasing

sequence{rn} in A such thatlim
n

rn = λ. Putβn = 1−rn

1−λ
. Obviously0 ≤ βn ≤ 1, lim

n
βn = 1

and rn+βn−1
rn

≤ 1. Sincern+βn−1
rn

x ∈ B andrn ∈ A we conclude that

βnz = λβnx + (1− λ) βny = rn
rn + βn − 1

rn

x + (1− rn) y ∈ B.

Thusβn‖z‖ = ‖βnz‖ ≤ 1 for all n. Tendingn to infinity we get‖z‖ ≤ 1, i.e. z ∈ B.

3. EULER -L AGRANGE NORM

We introduce the concept of Euler-Lagrange norm by replacing the triangle inequality by an
Euler-Lagrange type inequality; cf. [3].

Definition 3.1. Let X be a real or complex linear space,m, m1, m2, a1, a2 be non-negative
fixed numbers such thatm = m1a

2
1 + m2a

2
2. A mapping‖ · ‖ : X → [0,∞) is called an

Euler-Lagrange norm onX if it satisfies the following conditions:

(1) ‖x‖ = 0 ⇔ x = 0,
(2) ‖λx‖ = ‖λ‖‖x‖ for all x ∈ X and all scalarλ,

(3) ‖a1x1+a2x2‖2
m

≤ ‖x1‖2
m1

+ ‖x2‖2
m2

, for all x, y ∈ X .

We are ready to prove our next result.

Proposition 3.1. Every usual norm is an Euler-Lagrange norm.

Proof. Assume thatm2a2 ≤ m1a1. Consider the functionf(t) = t2

m2
+ 1

m1
− (a1+ta2)2

m
having

the derivativef ′(t) = 2t
m2
− 2a2(a1+a2t)

m
. Evidently,f ′(t) ≥ 0 if and only if m2a2

m1a1
≤ t. Hencef

is monotonically increasing on[m2a2

m1a1
,∞). In particular, for allt ≥ 1, we havef(t) ≥ f(1) ≥

f(m2a2

m1a1
) = 0.

Thusf( ‖y‖‖x‖) =
(
‖y‖
‖x‖ )2

m2
+ 1

m1
−

(a1+
‖y‖
‖x‖a2)2

m
≥ 0 whenever‖x‖ ≤ ‖y‖. Therefore‖a1x+a2y‖2

m
≤

(a1‖x‖+a2‖y‖)2
m

≤ ‖x‖2
m1

+ ‖y‖2
m2

for all x, y ∈ X . It follows that‖.‖ is an Euler-Lagrange norm.
In the case thatm1a1 ≤ m2a2 we can apply the same method by using the functionf(t) =

t2

m1
+ 1

m2
− (ta1+a2)2

m
.

Our last result is the following.

Theorem 3.2.Every Euler-Lagrange norm is a usual norm ifm1a
2
1 = m2a

2
2.
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Proof. Let B = {x : ‖x‖ ≤ 1} and letx, y ∈ B. We have

‖x + y

2
‖2 ≤

‖a1
x
a1

+ a2
y
a2
‖2

4

≤
(a1

‖x‖
a1

+ a2
‖y‖
a2

)2

4

≤ m

4

(
1

m1

‖x‖2

a2
1

+
1

m2

‖y‖2

a2
2

)
≤ m2

4m1m2a2
1a

2
2

= 1,

whence1
2
x +

(
1− 1

2

)
y ∈ B.

The rest of the proof is similar to the last part of the proof of Theorem 2.2.
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