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Abstract

In 1968 S.M. Ulam proposed the problem: “When is it true that by changing a little the hypotheses of
a theorem one can still assert that the thesis of the theorem remains true or approximately true?” In 1978
P.M. Gruber proposed the Ulam type problem: “Suppose a mathematical object satisfies a certain property
approximately. Is it then possible to approximate this object by objects, satisfying the property exactly?”
In this paper we solve the generalized Ulam stability problem for non-linear Euler–Lagrange quadratic
mappings satisfying approximately a mean equation and an Euler–Lagrange type functional equations in
quasi-Banach spaces and p-Banach spaces.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A definition of stability in the case of homomorphisms between groups was suggested by
a problem posed by S.M. Ulam [21] in 1940: Let (G1,∗) be a group and let (G2,�, d) be a metric

* Corresponding author.
E-mail addresses: hmkim@math.cnu.ac.kr (H.-M. Kim), jrassias@tellas.gr (J.M. Rassias).

1 This work was supported by the second Brain Korea 21 Project in 2006.
0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.02.075



278 H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296
group with the metric d(·,·). Given ε > 0, does there exist a δ(ε) > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d
(
h(x ∗ y),h(x) � h(y)

)
< δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d
(
h(x),H(x)

)
< ε

for all x ∈ G1? In other words, if a mapping is almost homomorphism then there is a true ho-
momorphism near it with small error as much as possible. If the answer is affirmative, we would
call that the equation H(x ∗ y) = H(x) � H(y) of homomorphism is stable. The concept of sta-
bility for a functional equation arises when we replace the functional equation by an inequality
which acts as a perturbation of the equation. Thus the stability question of functional equations
is that how do the solutions of the inequality differ from those of the given functional equa-
tion? In 1941 D.H. Hyers [5] solved this problem for linear mappings. In 1951 D.G. Bourgin [2]
was the second author to treat the Ulam problem for additive mappings. T.M. Rassias [18] suc-
ceeded in extending the result of Hyers by weakening the condition for the Cauchy difference.
In 1982 J.M. Rassias [9] extended Hyers result [5] by weakening the pertinent inequality con-
trolled by a product of powers of norms. The stability problems of several functional equations
have been extensively investigated by a number of authors and there are many interesting re-
sults concerning this problem. A large list of references can be found, for example, in the papers
[4,9,10,19] and references therein. In 1978 according to P.M. Gruber [4] this kind of stability
problems is of particular interest in probability theory and in the case of functional equations
of different types. Furthermore we quote that these stability results can be applied to mathe-
matical statistics, stochastic analysis, algebra, geometry as well as psychology and sociology.
We wish to note that stability properties of different functional equations can have applications
to unrelated fields. For instance, Zhou [22] used a stability property of the functional equation
f (x − y)+f (x + y) = 2f (x) to prove a conjecture of Z. Ditzian about the relationship between
the smoothness of a mapping and the degree of its approximation by the associated Bernstein
polynomials.

It is well known that a mapping f between real vector spaces satisfies the following quadratic
functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1.1)

for all x, y if and only if there is a unique symmetric biadditive mapping B such that f (x) =
B(x, x) for all x, where B is given by B(x, y) = 1

4 (f (x + y) − f (x − y)) (see [6]). A stability
problem for the quadratic functional equation (1.1) was solved by a lot of authors [3,8,19]. In par-
ticular, we note that J.M. Rassias introduced the Euler–Lagrange quadratic mappings, motivated
from the following pertinent algebraic equation

|a1x1 + a2x2|2 + |a2x1 − a1x2|2 = (
a2

1 + a2
2

)[|x1|2 + |x2|2
]
. (1.2)

Thus the second author of this paper introduced and investigated the stability problem of Ulam
for the relative Euler–Lagrange functional equation

f (a1x1 + a2x2) + f (a2x1 − a1x2) = (
a2

1 + a2
2

)[
f (x1) + f (x2)

]
(1.3)

in the publications [11–13]. In addition J.M. Rassias [13] generalized the above algebraic equa-
tion (1.2) to the following equation
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m1m2|a1x1 + a2x2|2 + |m2a2x1 − m1a1x2|2 = (
m1a

2
1 + m2a

2
2

)[
m2|x1|2 + m1|x2|2

]
.

Therefore the coauthor of this paper introduced the general pertinent Euler–Lagrange quadratic
mappings via his paper [14] and investigated the stability problem of Ulam for the following
generalized functional equation of (1.3)

m1m2Q(a1x1 + a2x2) + Q(m2a2x1 − m1a1x2)

= (
m1a

2
1 + m2a

2
2

)[
m2Q(x1) + m1Q(x2)

]
(1.4)

for all vectors x1, x2 ∈ X with X a normed linear space and Y a Banach space, and any fixed
pair (a1, a2) of nonzero reals and any fixed pair (m1,m2) of positive reals. Analogous quadratic
mappings were introduced and investigated through J.M. Rassias’ publications [15–17]. There-
fore these Euler–Lagrange mappings could be named generalized Euler–Lagrange mappings and
the corresponding Euler–Lagrange equations might be called generalized Euler–Lagrange equa-
tions. Before 1992 these mappings and equations were not known at all in functional equations
and inequalities. However, a completely different kind of Euler–Lagrange partial differential
equations is known in calculus of variations. Therefore we think that our introduction of Euler–
Lagrange mappings and equations in functional equations and inequalities provides an interesting
cornerstone in analysis. Already some mathematicians have employed these Euler–Lagrange
mappings.

If �ABC is a triangle in an inner product space and I is the interior point of the side BC with
a|BI | = b|CI | for some a, b ∈ N, then we see that the following geometric identity

a2‖−−→
AB‖2 + ab‖−−→

AC‖2 = (a + b)
(
a‖−−→

AI‖2 + b‖−−→
CI‖2).

Employing the above identity, we obtain a functional equation,

(a + b)aQ(x) + (a + b)bQ(y) = Q(ax + by) + abQ(x − y), (1.5)

of which geometric interpretation leads to (1.5) on the triangle �ABC with a|BI | = b|CI |
for the point I in the side BC [7]. In particular, if a = b in (1.5) then Eq. (1.5) reduces to the
quadratic functional equation (1.1). On the other hand, if either E is the exterior point of the half-
line

−−→
BC with a|CE| = b|BE| or E is the exterior point of the half-line

−−→
CB with a|EB| = b|EC|,

then the corresponding geometric equation gives similarly rise to a functional equation

(a − b)bQ(y) + Q(ax − by) = a(a − b)Q(x) + abQ(x − y) (1.6)

for all x, y ∈ X, and for a mapping Q : X → Y and given positive integers a, b ∈ N (a > b) [7].
We note that functional equations (1.3) and (1.5) are special cases of (1.4). In this paper, us-

ing the direct method and ideas inspired by [14], we are going to solve the generalized Ulam
stability problem for non-linear Euler–Lagrange quadratic mappings f : X → Y , satisfying
approximately an Euler–Lagrange mean equation and an Euler–Lagrange quadratic functional
equation (1.4) controlled by a nonnegative function and a constant

m = (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
> 0.

As results, we obtain the generalized theorems of the results in the papers [7,11,12,15,17].



280 H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296
2. Stability of (1.4)

Let X be a normed linear space and Y a Banach space throughout this paper unless we give
some specific reference. Then consider a non-linear mapping Q : X → Y satisfying the funda-
mental Euler–Lagrange functional equation

m2
1m2Q(a1x) + m1Q(m2a2x) = m2

0m2Q

(
m1

m0
a1x

)
+ m2

0m1Q

(
m2

m0
a2x

)
(2.1)

with

m0 := m1m2 + 1

m1 + m2
, m := (m1 + m2)(m1a

2
1 + m2a

2
2)

m1m2 + 1

for all x ∈ X, and any fixed nonzero reals ai and any fixed positive reals mi (i = 1,2). A non-
linear mapping Q : X → Y is called generalized Euler–Lagrange quadratic if the mapping Q

satisfies Eqs. (2.1) and (1.4). They say that the non-linear mappings Q : X → Y, and Q : X → Y

are 2-dimensional Euler–Lagrange quadratic weighted means of first, and second form if

Q(x) = m2
0m2Q(m1

m0
a1x) + m2

0m1Q(m2
m0

a2x)

m1m2(m1a
2
1 + m2a

2
2)

,

and

Q(x) = m1m2Q(a1x) + Q(m2a2x)

m2(m1a
2
1 + m2a

2
2)

hold for all x ∈ X, respectively.
Note that the fundamental functional equation (2.1) is equivalent to the Euler–Lagrange

quadratic mean functional equation

Q(x) = Q(x) (2.2)

for all x ∈ X. Moreover, note that in the case of Eqs. (1.4) and (2.1) are of the form

Q(x) = Q(x) = Q(x) (2.3)

for all x ∈ X.

Lemma 2.1. (See [14].) Let Q : X → Y be a generalized Euler–Lagrange quadratic mapping
satisfying Eq. (1.4). If m �= 1, then Q satisfies the equation

Q(0) = 0, Q
(
mnx

) = m2nQ(x) (2.4)

for all x ∈ X and all integers n ∈ Z.

For notational convenience, given a mapping f : X → Y we define a generalized Euler–
Lagrange difference operator D

a1,a2
m1,m2 of Eq. (1.4) as

Da1,a2
m1,m2

f (x1, x2) := m1m2f (a1x1 + a2x2) + f (m2a2x1 − m1a1x2)

− (
m1a

2
1 + m2a

2
2

)[
m2f (x1) + m1f (x2)

]
,
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which is called the approximate remainder of the functional equation (1.4) and acts as a pertur-
bation of the equation for all vectors x1, x2 ∈ X, and any fixed pair (a1, a2) of nonzero reals and
any fixed pair (m1,m2) of positive reals.

Now we will investigate under what conditions it is then possible to find a true general-
ized Euler–Lagrange quadratic mapping Q near an approximate generalized Euler–Lagrange
quadratic mapping f .

Theorem 2.2. Assume that f : X → Y is a mapping for which there exist mappings ϕ1 : X2 →
[0,∞) and ψ1 : X → [0,∞) such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ1(x, y) (2.5)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥
� ψ1(x) (2.6)

for all x ∈ X. Suppose that

m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
> 1

and the series

Φ1(x, y) :=
∞∑
i=0

ϕ1(m
ix,miy)

m2i
, Ψ1(x) :=

∞∑
i=0

ψ1(m
ix)

m2i
(2.7)

converge for all x, y ∈ X.
Then the limit

Q(x) = lim
n→∞

f (mnx)

m2n

exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that

∥∥f (x) − Q(x)
∥∥ � Φ1(x,0)

m0mm2
+ 1

m2m1m2
Φ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ Ψ1(x)

m0mm1m2

+ m2m2
1 + 1

m1m2(m2 − 1)

∥∥f (0)
∥∥ (2.8)

holds for all x ∈ X, where ‖f (0)‖ � ϕ1(0,0)
(m1m2+1)(m−1)

.

Proof. Observe that the functional inequality (2.6) can be written by

∥∥f (x) − f (x)
∥∥ � ψ1(x)

m1m2(m1a
2
1 + m2a

2
2)

= ψ1(x)

m0mm1m2
(2.9)

for all x ∈ X. Substitution of x = y = 0 in inequality (2.5) yields that∥∥m1m2f (0) + f (0) − m0m(m1 + m2)f (0)
∥∥ � ϕ1(0,0),
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or ∥∥f (0)
∥∥ � ϕ1(0,0)

(m1m2 + 1)(m − 1)
.

Moreover substituting y = 0 in inequality (2.5), one concludes the functional inequality∥∥m1m2f (a1x) + f (m2a2x) − m0m
[
m2f (x) + m1f (0)

]∥∥ � ϕ1(x,0),

or ∥∥f (x) − f (x)
∥∥ � ϕ1(x,0)

m0mm2
+ m1‖f (0)‖

m2
. (2.10)

In addition replacing x, y in inequality (2.5) by m1a1
m0

x, m2a2
m0

x, respectively, one gets the func-
tional inequality∥∥∥∥m1m2f (mx) + f (0) − m0m

[
m2f

(
m1a1

m0
x

)
+ m1f

(
m2a2

m0
x

)]∥∥∥∥
� ϕ1

(
m1a1

m0
x,

m2a2

m0
x

)
,

or ∥∥∥∥f (mx)

m2
− f (x)

∥∥∥∥ � 1

m2m1m2

[
ϕ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ ∥∥f (0)

∥∥]
. (2.11)

Using the functional inequalities (2.9)–(2.11) and the triangle inequality, we have the basic in-
equality∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
�

∥∥f (x) − f (x)
∥∥ + ∥∥f (x) − f (x)

∥∥ +
∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
� ϕ1(x,0)

m0mm2
+ 1

m2m1m2
ϕ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ ψ1(x)

m0mm1m2
+ (m2m2

1 + 1)‖f (0)‖
m2m1m2

:= ε(x), ∀x ∈ X. (2.12)

Now substituting mjx for x in (2.12) one gets the inequality∥∥∥∥f (mjx)

m2j
− f (mj+1x)

m2(j+1)

∥∥∥∥ � ε(mjx)

m2j
,

which yields the following general functional inequality∥∥∥∥f (x) − f (mnx)

m2n

∥∥∥∥ �
n−1∑
j=0

ε(mjx)

m2j

�
n−1∑
j=0

[
ϕ1(m

jx,0)

m0mm2m2j
+ 1

m2m1m2m2j
ϕ1

(
m1a1

m0
mjx,

m2a2

m0
mjx

)

+ ψ1(m
jx)

2j
+ (m2m2

1 + 1)‖f (0)‖
2 2j

]
(2.13)
m0mm1m2m m m1m2m
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for all x ∈ X and all nonnegative integer n. We claim that a sequence {gn(x) | n ∈ N} of mappings
gn(x) := f (mnx)

m2n converges for all x ∈ X. In fact, for any nonnegative integers n, l with n > l, we
figure out by (2.13) and triangle inequality

∥∥gl(x) − gn(x)
∥∥ � 1

m2l

∥∥∥∥f
(
mlx

) − f (mn−lmlx)

m2(n−l)

∥∥∥∥ � 1

m2l

n−l−1∑
j=0

ε(mjmlx)

m2j

�
n−1∑
j=l

[
ϕ1(m

jx,0)

m0mm2m2j
+ 1

m2m1m2m2j
ϕ1

(
m1a1

m0
mjx,

m2a2

m0
mjx

)

+ ψ1(m
jx)

m0mm1m2m2j
+ (m2m2

1 + 1)‖f (0)‖
m2m1m2m2j

]
→ 0 as l → ∞,

which shows that {gn(x)} is a Cauchy sequence in Y. Therefore we see that a mapping Q : X → Y

defined by

Q(x) := lim
n→∞

f (mnx)

m2n

exists for all x ∈ X. Taking the limit as n → ∞ in (2.13), we find that the mapping Q near the
approximate mapping f : X → Y of Eq. (1.4) satisfies the inequality (2.8).

In addition, we claim that the mapping Q satisfies Eq. (1.4) for all x, y ∈ X. In fact, it is clear
from (2.5) that the following inequality

1

m2n

∥∥Da1,a2
m1,m2

f
(
mnx,mny

)∥∥ � 1

m2n
ϕ1

(
mnx,mny

)
holds for all x, y ∈ X and all n ∈ N. Taking the limit n → ∞, we see from (2.7) and the definition
of Q that Q satisfies the equation

Da1,a2
m1,m2

Q(x,y) = 0,

that is, Q is a generalized Euler–Lagrange quadratic mapping satisfying Eq. (1.4). Moreover,
from (2.6), (2.7) and (2.9), one proves that

∥∥Q(x) − Q(x)
∥∥ = lim

n→∞
1

m2n

∥∥f
(
mnx

) − f
(
mnx

)∥∥
� lim

n→∞
ψ1(m

nx)

m1m2(m1a
2
1 + m2a

2
2)m2n

= 0,

completing the proof that Q satisfies the fundamental functional equation (2.1) and so the mean
functional equation (2.2).

Let Q̌ : X → Y be another generalized Euler–Lagrange quadratic mapping satisfying the
equation

Da1,a2
m1,m2

Q̌(x, y) = 0

and the approximate error bound

∥∥f (x) − Q̌(x)
∥∥ � Φ1(x,0)

m0mm2
+ 1

m2m1m2
Φ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ Ψ1(x,0)

m0mm1m2

+ m2m2
1 + 1

2

∥∥f (0)
∥∥ (2.14)
m1m2(m − 1)
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for all x ∈ X. To prove the above-mentioned uniqueness we employ Lemma 2.1, so that

Q(x) = m−2nQ
(
mnx

)
, Q̌(x) = m−2nQ̌

(
mnx

)
hold for all x ∈ X and all n ∈ N. Thus the triangle inequality and inequalities (2.8), (2.14) yield
the inequality

∥∥Q(x) − Q̌(x)
∥∥ = 1

m2n

∥∥Q
(
mnx

) − Q̌
(
mnx

)∥∥
� 1

m2n

(∥∥Q
(
mnx

) − f
(
mnx

)∥∥ + ∥∥f
(
mnx

) − Q̌
(
mnx

)∥∥)
� 2

[
Φ1(m

nx,0)

m0mm2m2n
+ 1

m2m1m2m2n
Φ1

(
m1a1

m0
mnx,

m2a2

m0
mnx

)

+ Ψ1(m
nx,0)

m0mm1m2m2n
+ m2m2

1 + 1

m1m2(m2 − 1)m2n

∥∥f (0)
∥∥]

for all x ∈ X and all n ∈ N. Therefore from n → ∞, one establishes

Q(x) − Q̌(x) = 0

for all x ∈ X, completing the proof of uniqueness. The proof of Theorem 2.2 is now com-
plete. �
Theorem 2.3. Assume that f : X → Y is a mapping for which there exist mappings ϕ2 : X2 →
[0,∞) and ψ2 : X → [0,∞) such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ2(x, y) (2.15)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥
� ψ2(x) (2.16)

for all x ∈ X. Suppose that

0 < m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
< 1

and the series

Φ2(x, y) :=
∞∑
i=1

m2iϕ2

(
x

mi
,

y

mi

)
, Ψ2(x) :=

∞∑
i=1

m2iψ2

(
x

mi

)
(2.17)

converge for all x, y ∈ X.
Then the limit

Q(x) = lim
n→∞m2nf

(
x

mn

)
exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that
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∥∥f (x) − Q(x)
∥∥ � Φ2(x,0)

m0mm2
+ 1

m2m1m2
Φ2

(
m1a1

m0
x,

m2a2

m0
x

)
+ Ψ2(x)

m0mm1m2

+ m2m2
1 + 1

m1m2(1 − m2)

∥∥f (0)
∥∥ (2.18)

holds for all x ∈ X, where ‖f (0)‖ � ϕ2(0,0)
(m1m2+1)(1−m)

.

Proof. Using the same argument as those of (2.9)–(2.13), we obtain the crucial inequality∥∥∥∥f (x) − m2f

(
x

m

)∥∥∥∥ � m2ε2

(
x

m

)
, (2.19)

where

ε2(x) := ϕ2(
x
m

,0)

m0mm2
+ 1

m2m1m2
ϕ2

(
m1a1

m0

x

m
,
m2a2

m0

x

m

)
+ ψ2(

x
m

)

m0mm1m2

+ (m2m2
1 + 1)‖f (0)‖
m2m1m2

∀x ∈ X,

which induces similarly∥∥∥∥f (x) − m2nf

(
x

mn

)∥∥∥∥ �
n∑

j=1

[
m2j ϕ2(

x
mj ,0)

m0mm2
+ m2j

m2m1m2
ϕ2

(
m1a1

m0

x

mj
,
m2a2

m0

x

mj

)

+ m2jψ2(
x

mj )

m0mm1m2
+ m2j (m2m2

1 + 1)‖f (0)‖
m2m1m2

]
(2.20)

for all x ∈ X and all n ∈ N.

Utilizing the last functional inequality (2.20) and the similar argument to the corresponding
proof of Theorem 2.2, we obtain the conclusion of this theorem. �

We observe that if m1 = m2 = 1, then m0 = 1 and

f (x) = f (a1x) + f (a2x)

a2
1 + a2

2

= f (x).

Thus one has the generalized Ulam stability problem for Eq. (1.3) if m = a2
1 + a2

2 �= 1 and the
corresponding series (2.7) or (2.17) converges. In turn, note that if m1 = 1,m2 > 0, then m0 = 1
and

f (x) = m2f (a1x) + f (m2a2x)

m2(a
2
1 + m2a

2
2)

= f (x).

Thus they have the generalized Ulam stability problem for the equation

m2f (a1x1 + a2x2) + f (m2a2x1 − a1x2) = (
a2

1 + m2a
2
2

)[
m2f (x1) + f (x2)

]
if m = a2

1 + m2a
2
2 �= 1 and the corresponding series (2.7) or (2.17) converges.

In particular, given ϕi(x, y) := c1 and ψi(x) := c2 for some nonnegative constants c1, c2 in the
main theorems, one gets the result of J.M. Rassias [14]. As a special case, if one takes m1 := a,
m2 := b, a1 := −1, a2 := 1 and switches x with y, and then considers ϕ1(y, x) := ϕ(x, y) in
Theorem 2.2, then one has the following corollary.
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Corollary 2.4. Assume that f : X → Y is a mapping for which there exist mappings ϕ : X2 →
[0,∞) and ψ : X → [0,∞) such that the Euler–Lagrange functional inequality

∥∥f (ax + by) + abf (x − y) − (a + b)af (x) − (a + b)bf (y)
∥∥ � ϕ(x, y)

holds for all x, y ∈ X and any fixed positive integers a, b and

∥∥∥∥a2bf (−x) + af (bx) −
(

ab + 1

a + b

)2[
bf

(
−

(
a + b

ab + 1

)
ax

)
+ af

((
a + b

ab + 1

)
bx

)]∥∥∥∥
� ψ(x)

for all x ∈ X. Suppose that the series

Φ(x,y) :=
∞∑
i=0

ϕ(mix,miy)

m2i
, Ψ (x) :=

∞∑
i=0

ψ(mix)

m2i

converge for all x, y ∈ X, where m := (a+b)2

ab+1 .
Then the limit

Q(x) = lim
n→∞

f (mnx)

m2n

exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.5), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that

∥∥f (x) − Q(x)
∥∥ � Φ(0, x)

(a + b)b
+ (ab + 1)2

ab(a + b)4
Φ

(
(a + b)bx

ab + 1
,− (a + b)ax

ab + 1

)

+ Ψ (x)

ab(a + b)
+ [(a + b)2a2 + (ab + 1)2]

ab[(a + b)4 − (ab + 1)2]
∥∥f (0)

∥∥
holds for all x ∈ X, where ‖f (0)‖ � ϕ(0,0)

(a+b)2−(ab+1)
.

Corollary 2.5. Assume that f : X → Y is a mapping for which there exist nonnegative reals c1,
c2 and positive reals p1, p2, r such that the Euler–Lagrange functional inequality

∥∥Da1,a2
m1,m2

f (x, y)
∥∥ � c1‖x‖p1‖y‖p2

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥ � c2‖x‖r

for all x ∈ X.
Then there exists a unique generalized Euler–Lagrange quadratic mapping Q : X → Y satis-

fying Eq. (1.4), that is, D
a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1) and mean

functional equation (2.2) such that
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∥∥f (x) − Q(x)
∥∥ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1|m1a1|p1 |m2a2|p2 ‖x‖p1+p2

m1m2m
p1+p2
0 (m2−mp1+p2 )

+ c2m‖x‖r

m0m1m2(m
2−mr)

,

if m > 1, r < 2 and p1 + p2 < 2

(or m < 1, r > 2 and p1 + p2 > 2),

c1|m1a1|p1 |m2a2|p2 ‖x‖p1+p2

m1m2m
p1+p2
0 (mp1+p2−m2)

+ c2m‖x‖r

m0m1m2(m
r−m2)

,

if m < 1, r < 2 and p1 + p2 < 2

(or m > 1, r > 2 and p1 + p2 > 2)

holds for all x ∈ X.

Proof. Take account of ϕi(x, y) := c1‖x‖p1‖y‖p2 and ψi(x) := c2‖x‖r and then apply Theo-
rems 2.2 and 2.3 for each cases. �
Corollary 2.6. Assume that f : X → Y is a mapping for which there exist nonnegative reals c1,
c2 and positive reals p1, p2, r such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � c1
(‖x‖p1 + ‖y‖p2

)
holds for all x, y ∈ X and∥∥∥∥m2

1m2f (a1x) + m1f (m2a2x) − m2
0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥ � c2‖x‖r

for all x ∈ X.
Then there exists a unique generalized Euler–Lagrange quadratic mapping Q : X → Y satis-

fying Eq. (1.4), that is, D
a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1) and mean

functional equation (2.2) such that∥∥f (x) − Q(x)
∥∥

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1m‖x‖p1

m0m2(m
2−mp1 )

+ c1|m1a1|p1‖x‖p1

m1m2m
p1
0 (m2−mp1 )

+ c1|m2a2|p2‖x‖p2

m1m2m
p2
0 (m2−mp2 )

+ c2m‖x‖r

m0m1m2(m
2−mr)

,

if m > 1, and r,p1,p2 < 2 (or m < 1, and r,p1,p2 > 2),
c1m‖x‖p1

m0m2(m
p1−m2)

+ c1|m1a1|p1‖x‖p1

m1m2m
p1
0 (mp1−m2)

+ c1|m2a2|p2‖x‖p2

m1m2m
p2
0 (mp2−m2)

+ c2m‖x‖r

m0m1m2(m
r−m2)

,

if m < 1, and r,p1,p2 < 2 (or m > 1, and r,p1,p2 > 2)

holds for all x ∈ X.

Proof. Take account of ϕi(x, y) := c1(‖x‖p1 + ‖y‖p2) and ψi(x) := c2‖x‖r and then apply
Theorems 2.2 and 2.3 for each cases. �

Now, in the next theorem we consider a singular case m := (m1+m2)(m1a
2
1+m2a

2
2)

m1m2+1 = 1 of Theo-
rems 2.2 and 2.3.

Theorem 2.7. Assume that f : X → Y is a mapping for which there exists a mapping ϕ3 : X2 →
[0,∞) such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ3(x, y) (2.21)

holds for all x, y ∈ X. Suppose that

m := (m1 + m2)(m1a
2
1 + m2a

2
2) = 1,
m1m2 + 1



288 H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296
2-dimensional vectors (m1,m2), (a2, a1) are linearly dependent, and that the series

Φ3(x, y) :=
∞∑
i=0

ϕ3(l
ix, liy)

l2i
, if l2 > 1

(
Φ3(x, y) :=

∞∑
i=1

l2iϕ3

(
x

li
,
y

li

)
, if l2 < 1

)

converges for all x, y ∈ X, where l := a1 + a2 is given with l2 �= 0,1.
Then there exists a unique generalized Euler–Lagrange quadratic mapping Q : X → Y satis-

fying Eq. (1.4), that is, D
a1,a2
m1,m2Q(x,y) = 0, such that

∥∥f (x) − Q(x)
∥∥ �

⎧⎨
⎩

Φ3(x,x)

m1m2l
2 + ‖f (0)‖

m1m2(l
2−1)

, if l2 > 1,

Φ3(x,x)

m1m2l
2 + ‖f (0)‖

m1m2(1−l2)
, if l2 < 1,

holds for all x ∈ X. The mapping Q : X → Y is given by

Q(x) = lim
n→∞

f (lnx)

l2n
, if l2 > 1

(
Q(x) = lim

n→∞ l2nf

(
x

ln

)
, if l2 < 1

)
.

Moreover, if there exists a mapping ψ3 : X → [0,∞) for which the mapping f satisfies ap-
proximately the following fundamental functional equation as follows∥∥∥∥m2

1m2f (a1x) + m1f (m2a2x) − m2
0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥ � ψ3(x)

and

Ψ3(x) :=
∞∑
i=0

ψ3
(
lix

)
l2i

, if l2 > 1

(
Ψ3(x) :=

∞∑
i=1

l2iψ3

(
x

li

)
, if l2 < 1

)

converges for all x ∈ X, then the mapping Q : X → Y satisfies further the fundamental functional
equation (2.1) and mean functional equation (2.2).

Proof. Note that

m1m2 + 1

m1m2
= m2

1a1 + a2

m2
1a1

= (a1 + a2)
2

according to m2a2 = m1a1 and

m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
= 1.

Replacing y by x in (2.21), we obtain

∥∥f (lx) − l2f (x)
∥∥ � ϕ3(x, x)

m1m2
+ ‖f (0)‖

m1m2
,

which yields the following crucial functional inequality∥∥∥∥f (lnx)

l2n
− f (x)

∥∥∥∥ � 1

m1m2l2

n−1∑
i=0

ϕ3(l
ix, lix) + ‖f (0)‖

l2i
, if l2 > 1,

∥∥∥∥f (x) − l2nf

(
x

ln

)∥∥∥∥ � 1

m1m2l2

n∑
l2i

[
ϕ3

(
x

li
,
x

li

)
+ ∥∥f (0)

∥∥]
, if l2 < 1
i=1
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for all x ∈ X and all nonnegative integer n. Applying the similar argument to the proof of Theo-
rems 2.2 and 2.3 to the last functional inequality for each two cases, one has indeed the desired
results. �
3. Stability of (1.4) in quasi-Banach spaces

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 3.1. (See [1,20].) Let X be a linear space. A quasi-norm ‖ · ‖ is a real-valued function
on X satisfying the following:

(1) ‖x‖ � 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X.

The smallest possible K is called the modulus of concavity of ‖ · ‖. The pair (X,‖ · ‖) is
called a quasi-normed space if ‖ · ‖ is a quasi-norm on X. A quasi-Banach space is a complete
quasi-normed space.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p � 1) if

‖x + y‖p � ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

Clearly, p-norms are continuous, and in fact, if ‖ · ‖ is a p-norm on X, then the formula
d(x, y) := ‖x − y‖p defines an translation invariant metric for X and ‖ · ‖p is a p-homogeneous
F -norm. The Aoki–Rolewicz theorem [1,20] guarantees that each quasi-norm is equivalent to
some p-norm for some 0 < p � 1. In this section, we are going to prove the generalized Ulam sta-
bility of mappings satisfying approximately Eq. (1.4) in quasi-Banach spaces, and in p-Banach
spaces, respectively. Let X be a quasi-normed space and Y a quasi-Banach space. Let K � 1 be
the modulus of concavity of ‖ · ‖ throughout this section.

Theorem 3.2. Assume that f : X → Y is a mapping for which there exist mappings ϕ1 : X2 →
[0,∞) and ψ1 : X → [0,∞) such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ1(x, y)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥
� ψ1(x) (3.1)

for all x ∈ X. Suppose that

m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
>

√
K

and the series



290 H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296
Φ1(x, y) :=
∞∑
i=0

Kiϕ1(m
ix,miy)

m2i
, Ψ1(x) :=

∞∑
i=0

Kiψ1(m
ix)

m2i
(3.2)

converge for all x, y ∈ X.
Then the limit

Q(x) = lim
n→∞

f (mnx)

m2n

exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that

∥∥f (x) − Q(x)
∥∥ � K3Φ1(x,0)

m0mm2
+ K3

m2m1m2
Φ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ K3Ψ1(x)

m0mm1m2

+ K3(m2m2
1 + 1)‖f (0)‖

m1m2(m2 − K)
(3.3)

holds for all x ∈ X, where ‖f (0)‖ � ϕ1(0,0)
(m1m2+1)(m−1)

.

Proof. Using the functional inequalities (2.9)–(2.11) and the property of quasi-norm ‖ · ‖, we
have the basic inequality∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥ � K
∥∥f (x) − f (x)

∥∥ + K

∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
� K

∥∥f (x) − f (x)
∥∥ + K2

∥∥f (x) − f (x)
∥∥ + K2

∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
� K2ε(x), ∀x ∈ X, (3.4)

where ε(x) is defined as in (2.12). From the functional inequality (3.4), we show by applying
a standard procedure of the induction argument on n that∥∥∥∥f (x) − f (mnx)

m2n

∥∥∥∥ � K3
n−2∑
i=0

(
K

m2

)i

ε
(
mix

) + K2
(

K

m2

)n−1

ε
(
mn−1x

)
(3.5)

for all x ∈ X and all n � 1, which is considered to be (2.12) for n = 1. In fact, we figure out by
the inequality (3.5),∥∥∥∥f (x) − f (mn+1x)

m2(n+1)

∥∥∥∥
� K

∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥ + K

∥∥∥∥f (mx)

m2
− f (mn+1x)

m2(n+1)

∥∥∥∥
� K3ε(x) + K

m2

[
K3

n−2∑
i=0

(
K

m2

)i

ε
(
mi+1x

) + K2
(

K

m2

)n−1

ε
(
mnx

)]

= K3
n−1∑
j=0

(
K

m2

)j

ε
(
mjx

) + K2
(

K

m2

)n

ε
(
mnx

)
(3.6)

which yields (3.5) for n + 1. Thus one obtains that for all nonnegative integers n, l with n > l



H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296 291
∥∥∥∥f (mlx)

m2l
− f (mnx)

m2n

∥∥∥∥ = 1

m2l

∥∥∥∥f
(
mlx

) − f (mn−l · mlx)

m2(n−l)

∥∥∥∥
� K3

m2l

n−l−2∑
i=0

Kiε(ml+ix)

m2i
+ K2

m2l

Kn−l−1ε(mn−1x)

m2(n−l−1)

= K3

Kl

n−2∑
j=l

Kj ε(mjx)

m2j
+ K2

Kl

Kn−1ε(mn−1x)

m2(n−1)
, (3.7)

which tends to zero by (3.2) as l → ∞.

Therefore a mapping Q : X → Y given by

Q(x) = lim
n→∞

f (mnx)

m2n
, x ∈ X,

is well defined. Thus passing the limit n → ∞ in (3.5), we have the inequality (3.3). To prove
the uniqueness, let Q′ be another mapping satisfying (3.3). Then we get by Lemma 2.1 that
Q′(mnx) = m2nQ′(x) for all x ∈ X and all n ∈ N. Thus we have

∥∥Q(x) − Q′(x)
∥∥ � 1

m2n

{
K

∥∥Q
(
mnx

) − f
(
mnx

)∥∥ + K
∥∥f

(
mnx

) − Q′(mnx
)∥∥}

� 2K4Φ1(m
nx,0)

m0mm2m2n
+ 2K4

m2m1m2m2n
Φ1

(
m1a1

m0
mnx,

m2a2

m0
mnx

)

+ 2K4Ψ1(m
nx)

m0mm1m2m2n
+ 2K4(m2m2

1 + 1)‖f (0)‖
m1m2(m2 − K)m2n

(3.8)

for all x ∈ X. Taking the limit as n → ∞, then we conclude that Q(x) = Q′(x) for all x ∈ X.
The rest of the proof of this theorem is omitted as similar to the corresponding that of Theo-

rem 2.2. �
Theorem 3.3. Assume that f : X → Y is a mapping for which there exist mappings ϕ2 : X2 →
[0,∞) and ψ2 : X → [0,∞) such that the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ2(x, y) (3.9)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥
� ψ2(x) (3.10)

for all x ∈ X. Suppose that

0 < m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
<

1√
K

and the series

Φ2(x, y) :=
∞∑
i=1

Kim2iϕ2

(
x

mi
,

y

mi

)
, Ψ2(x) :=

∞∑
i=1

Kim2iψ2

(
x

mi

)
(3.11)

converge for all x, y ∈ X.
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Then the limit

Q(x) = lim
n→∞m2nf

(
x

mn

)
exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that

∥∥f (x) − Q(x)
∥∥ � K2Φ2(x,0)

m0mm2
+ K2

m2m1m2
Φ2

(
m1a1

m0
x,

m2a2

m0
x

)
+ K2Ψ2(x)

m0mm1m2

+ K3(m2m2
1 + 1)‖f (0)‖

m1m2(1 − Km2)
(3.12)

holds for all x ∈ X, where∥∥f (0)
∥∥ � ϕ2(0,0)

(m1m2 + 1)(1 − m)
.

Proof. Applying the same argument as that of (3.5)–(3.6) to (3.4), we obtain the crucial inequal-
ity ∥∥∥∥f (x) − m2nf

(
x

mn

)∥∥∥∥ � K2
n−1∑
i=1

Kim2iε2

(
x

mi

)
+ Kn+1m2nε2

(
x

mn

)
(3.13)

for all x ∈ X and all n ∈ N, where ε2(x) is defined as in (2.19).
Utilizing the last functional inequality (3.13) and the similar argument to the corresponding

process (3.7)–(3.8) of Theorem 3.2, we obtain the conclusion of this theorem. �
Remark 3.4. It will be interesting to investigate the stability problem of Ulam for the case of m

with 1/
√

K � m �
√

K in view of Theorems 3.2 and 3.3.

We now investigate the general Ulam stability problem for the functional equation (1.4) in
p-Banach spaces.

Theorem 3.5. Let X be a quasi-normed space and Y a p-Banach space. Assume that f : X → Y

is a mapping for which there exist mappings ϕ1 : X2 → [0,∞) and ψ1 : X → [0,∞) such that
the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ1(x, y)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥ � ψ1(x)

for all x ∈ X. Suppose that m := (m1+m2)(m1a
2
1+m2a

2
2)

m1m2+1 > 1 and the series

Φ1(x, y) :=
∞∑
i=0

ϕ1(m
ix,miy)p

m2ip
, Ψ1(x) :=

∞∑
i=0

ψ1(m
ix)p

m2ip
(3.14)

converge for all x, y ∈ X.
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Then the limit

Q(x) = lim
n→∞

f (mnx)

m2n

exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that

∥∥f (x) − Q(x)
∥∥ �

[
Φ1(x,0)

(m0mm2)p
+ 1

(m2m1m2)p
Φ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ Ψ1(x)

(m0mm1m2)p

+ (m2pm
2p

1 + 1)‖f (0)‖p

m
p

1 m
p

2 (m2p − 1)

]1/p

(3.15)

holds for all x ∈ X, where∥∥f (0)
∥∥ � ϕ1(0,0)

(m1m2 + 1)(m − 1)
.

Proof. Using the functional inequalities (2.9)–(2.11) and the property of quasi-norm ‖ · ‖, we
have the basic inequality∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
p

�
∥∥f (x) − f (x)

∥∥p + ∥∥f (x) − f (x)
∥∥p +

∥∥∥∥f (x) − f (mx)

m2

∥∥∥∥
p

�
(

ϕ1(x,0)

(m0mm2)
+ m1‖f (0)‖

m2

)p

+ ψ1(x)p

(m0mm1m2)p

+ 1

(m2m1m2)p

(
ϕ1

(
m1a1

m0
x,

m2a2

m0
x

)
+ ∥∥f (0)

∥∥)p

,

� ϕ1(x,0)p

(m0mm2)p
+ 1

(m2m1m2)p
ϕ1

(
m1a1

m0
x,

m2a2

m0
x

)p

+ ψ1(x)p

(m0mm1m2)p
+ (m2pm1

2p + 1)‖f (0)‖p

m2pm
p

1 m
p

2

∀x ∈ X. (3.16)

Thus one obtains from the last inequality that for all nonnegative integers n, l with n > l∥∥∥∥f (mlx)

m2l
− f (mnx)

m2n

∥∥∥∥
p

�
n−1∑
j=l

∥∥∥∥f (mjx)

m2j
− f (mj+1x)

m2(j+1)

∥∥∥∥
p

�
n−1∑
j=l

[
ϕ1(m

jx,0)p

(m0mm2)pm2jp
+ 1

(m2m1m2)pm2jp
ϕ1

(
m1a1

m0
mjx,

m2a2

m0
mjx

)p

+ ψ1(m
jx)p

(m0mm1m2)pm2jp
+ (m2pm1

2p + 1)‖f (0)‖p

m2pm
p

1 m
p

2 m2jp

]
, (3.17)

which tends to zero by (3.14) as l → ∞. Therefore a mapping Q : X → Y given by

Q(x) = lim
f (mnx)

2n
, x ∈ X,
n→∞ m



294 H.-M. Kim, J.M. Rassias / J. Math. Anal. Appl. 336 (2007) 277–296
is well defined. Letting l := 0 and then passing the limit n → ∞ in (3.17), we have the inequality
(3.15). To prove the uniqueness, let Q′ be another mapping satisfying (3.15). Then we get by
Lemma 2.1 that Q′(mnx) = m2nQ′(x) for all x ∈ X and all n ∈ N. Thus we have∥∥Q(x) − Q′(x)

∥∥p

� 1

m2np

{∥∥Q
(
mnx

) − f
(
mnx

)∥∥p + ∥∥f
(
mnx

) − Q′(mnx
)∥∥p}

� 2
∞∑

j=n

[
ϕ1(m

jx,0)p

(m0mm2)pm2jp
+ 1

(m2m1m2)pm2jp
ϕ1

(
m1a1

m0
mjx,

m2a2

m0
mjx

)p

+ ψ1(m
jx)p

(m0mm1m2)pm2jp
+ (m2pm1

2p + 1)‖f (0)‖p

m2pm
p

1 m
p

2 m2jp

]

for all x ∈ X and all n ∈ N. Taking the limit as n → ∞, then we conclude that Q(x) = Q′(x) for
all x ∈ X.

The rest of the proof of this theorem is omitted as similar to the corresponding that of Theo-
rem 2.2. �
Theorem 3.6. Let X be a quasi-normed space and Y a p-Banach space. Assume that f : X → Y

is a mapping for which there exist mappings ϕ2 : X2 → [0,∞) and ψ2 : X → [0,∞) such that
the Euler–Lagrange functional inequality∥∥Da1,a2

m1,m2
f (x, y)

∥∥ � ϕ2(x, y)

holds for all x, y ∈ X and∥∥∥∥m2
1m2f (a1x) + m1f (m2a2x) − m2

0m2f

(
m1

m0
a1x

)
− m2

0m1f

(
m2

m0
a2x

)∥∥∥∥ � ψ2(x)

for all x ∈ X. Suppose that

0 < m := (m1 + m2)(m1a
2
1 + m2a

2
2)

m1m2 + 1
< 1

and the series

Φ2(x, y) :=
∞∑
i=1

m2piϕ2

(
x

mi
,

y

mi

)p

, Ψ2(x) :=
∞∑
i=1

m2piψ2

(
x

mi

)p

(3.18)

converge for all x, y ∈ X.
Then the limit

Q(x) = lim
n→∞m2nf

(
x

mn

)
exists for all x ∈ X, and Q : X → Y is the unique generalized Euler–Lagrange quadratic map-
ping satisfying Eq. (1.4), that is, D

a1,a2
m1,m2Q(x,y) = 0, the fundamental functional equation (2.1)

and mean functional equation (2.2) such that∥∥f (x) − Q(x)
∥∥ �

[
Φ2(x,0)

(m0mm2)p
+ 1

(m2m1m2)p
Φ2

(
m1a1

m0
x,

m2a2

m0
x

)
+ Ψ2(x)

(m0mm1m2)p

+ (m2pm
2p

1 + 1)‖f (0)‖p

m
p
m

p
(1 − m2p)

]1/p

(3.19)

1 2
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holds for all x ∈ X, where

∥∥f (0)
∥∥ � ϕ2(0,0)

(m1m2 + 1)(1 − m)
.

Proof. Now by the similar argument to the functional inequalities (3.16) and (3.17), we get∥∥∥∥m2lf

(
x

ml

)
− m2nf

(
x

mn

)∥∥∥∥
p

�
n∑

j=l+1

∥∥∥∥m2j f

(
x

mj

)
− m2(j+1)f

(
x

mj+1

)∥∥∥∥
p

�
n∑

j=l+1

[
m2pj

(m0mm2)p
ϕ2

(
x

mj
,0

)p

+ m2pj

(m2m1m2)p
ϕ2

(
m1a1

m0

x

mj
,
m2a2

m0

x

mj

)p

+ m2pj

(m0mm1m2)p
ψ2

(
x

mj

)p

+ m2pj (m2pm1
2p + 1)‖f (0)‖p

m2pm
p

1 m
p

2

]
(3.20)

for all x ∈ X and all integers l, n with n > l � 0.
It follows from (3.18) and (3.20) that a sequence {m2nf ( x

mn )} is Cauchy sequence for all
x ∈ X. Since Y is complete, we may define a mapping Q : X → Y by

Q(x) = lim
m→∞m2nf

(
x

mn

)

for all x ∈ X. Letting l = 0 and taking the limit as n → ∞ in (3.20), one has the inequality (3.19).
The rest of the proof goes through by the same way as that of Theorem 3.5. This completes

the proof. �
Remark 3.7. The result for the case K = 1 in Theorem 3.2 (Theorem 3.3) is the same as the
result for the case p = 1 in Theorem 3.5 (Theorem 3.6).
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