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In 1940, Ulam proposed the famous Ulam stability problem. In 1941, Hyers solved the well-known Ulam
stability problem for additive mappings subject to the Hyers condition on approximately additive
mappings. In 2003–2006, the last author of this paper investigated the Hyers–Ulam stability of additive
and Jensen type mappings. In this paper, we improve results obtained in 2003 and 2005 for Jensen type
mappings and establish new theorems about the Ulam stability of additive and alternative additive
mappings. These stability results can be applied in stochastic analysis, financial and actuarial
mathematics, as well as in psychology and sociology.
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1. Introduction

In 1940 and in 1964, Ulam [31] proposed the famous Ulam stability problem:

“When is it true that by changing a little the hypotheses of a theorem one can still assert

that the thesis of the theorem remains true or approximately true?”

For very general functional equations, the concept of stability for a functional equation

arises when we replace the functional equation by an inequality which acts as a perturbation

of the equation. Thus, the stability question of functional equations is that how do the

solutions of the inequality differ from those of the given functional equation?

In 1941, Hyers [11] solved this stability problem for additive mappings subject to the

Hyers condition on approximately additive mappings. In 1951, Bourgin [3] was the second

author to treat the Ulam stability problem for additive mappings. In 1978, Gruber [10]

remarked that Ulam’s problem is of particular interest in probability theory and in the case of

functional equations of different types. We wish to note that stability properties of different

functional equations can have applications to unrelated fields. For instance, Zhou [32] used

a stability property of the functional equation f ðx2 yÞ þ f ðxþ yÞ ¼ 2f ðxÞ to prove
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a conjecture of Z. Ditzian about the relationship between the smoothness of a mapping and

the degree of its approximation by the associated Bernstein polynomials. Rassias [28] and

then Gǎvruta [8] obtained generalized results of Hyers’ Theorem which allow the Cauchy

difference to be unbounded. In 1987, Gajda and Ger [7] showed that one can get analogous

stability results for subadditive multifunctions. The stability problems of several functional

equations have been extensively investigated by a number of authors and there are many

interesting results concerning this problem. A large list of references can be found, for

example, in the papers [1,4–6,12,13,29] and references therein. In 1982–2005, Rassias

[17,18,20–24] established the Hyers–Ulam stability of linear and nonlinear mappings. In

2003–2006, J.M. Rassias and M.J. Rassias [25,26] and Rassias[27] solved the above Ulam

problem for Jensen and Jensen type mappings. In 1999, Gǎvruta [9] answered a question of

Rassias [19] concerning the stability of the Cauchy equation.

We note that J.M. Rassias [20, 22–23] introduced the Euler–Lagrange quadratic

mappings, motivated from the following pertinent algebraic equation

ja1x1 þ a2x2j
2
þ ja2x1 2 a1x2j

2
¼ a2

1 þ a2
2

� �
jx1j

2
þ jx2j

2
h i

Thus, the third author of this paper introduced and investigated the stability problem of Ulam

for the relative Euler–Lagrange functional equation

f ða1x1 þ a2x2Þ þ f ða2x1 2 a1x2Þ ¼ a2
1 þ a2

2

� �
½ f ðx1Þ þ f ðx2Þ�: ð1:1Þ

in the publications [20–22]. Analogous quadratic mappings were introduced and

investigated through J.M. Rassias’ publications [23,26]. Before 1992, these mappings and

equations were not known at all in functional equations and inequalities. However, a

completely different kind of Euler–Lagrange partial differential equations is known in

calculus of variations. In this paper, we introduce Cauchy and Cauchy–Jensen mappings of

Euler–Lagrange and thus generalize Ulam stability results controlled by more general

mappings, by considering approximately Cauchy and Cauchy–Jensen mappings of Euler–

Lagrange satisfying conditions much weaker than Hyers and J.M. Rassias conditions on

approximately Cauchy and Cauchy–Jensen mappings of Euler–Lagrange. These stability

results can be applied in stochastic analysis [16], financial and actuarial mathematics, as well

as in psychology and sociology.

Throughout this paper, let X be a real normed space and Y a real Banach space in the case

of functional inequalities, as well as let X and Y be real linear spaces for functional equations.

Besides let us denote by N the set of all natural numbers and R the set of all real numbers.

Definition 1.1. A mapping f :X ! Y is called additive if f satisfies the functional equation

Aðxþ yÞ ¼ AðxÞ þ Að yÞ ð1:2Þ

for all x, y [ X. We note that the equation (1.2) is equivalent to the Jensen equation

2A
xþ y

2

� �
¼ AðxÞ þ Að yÞ

for all x, y [ X and A(0) ¼ 0.

K.-W. Jun et al.1140
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Now, we consider a mapping A :X ! Y, which may be analogously called Euler–

Lagrange additive, satisfying the functional equation

Aðaxþ byÞ þ Aðbxþ ayÞ ¼ ðaþ bÞ½AðxÞ þ Að yÞ� ð1:3Þ

for all x, y [ X, where a; b [ R are nonzero fixed reals with a þ b – 0. Next, we consider a

mapping A: X ! Y of Euler–Lagrange satisfying the functional equation

Aðaxþ byÞ þ Aðax2 byÞ ¼ 2aAðxÞ ð1:4Þ

which is equivalent to the equation of Jensen type

AðxÞ þ Að yÞ ¼ 2aA
xþ y

2a

� �
for all x, y [ X, where a; b [ R are nonzero fixed reals. It is easy to see that the equation

(1.4) together with A(0) ¼ 0 is equivalent to the equation (1.2). Alternatively, we investigate

the functional equation of Euler–Lagrange

Aðaxþ byÞ2 Aðax2 byÞ ¼ 2bAð yÞ ð1:5Þ

for all x, y [ X. We note that the equation (1.5) is equivalent to the equation

AðxÞ2 Að yÞ ¼ 2bA
x2 y

2b

� �
ð1:6Þ

for all x, y [ X, where a, b [ R are nonzero fixed reals. It follows that the equation (1.5) is

equivalent to the equation (1.2).

2. Stability of Euler–Lagrange additive mappings

We will investigate under what conditions it is then possible to find a true Euler–Lagrange

additive mapping near an approximate Euler–Lagrange additive mapping with small error.

We note that if l ¼ 1 in the next two theorems, then the mapping w is identically zero by the

convergence of series and thus f is itself the solution of the equation (1.3). Thus, we may

assume without loss of generality that l – 1 in these theorems.

Theorem 2.1. Assume that there exists a mapping w : X 2 ! ½0;1Þ for which a mapping

f: X ! Y satisfies the inequality

k f ðaxþ byÞ þ f ðbxþ ayÞ2 ðaþ bÞ½ f ðxÞ þ f ð yÞ�k # wðx; yÞ ð2:1Þ

and the series X1
i¼0

wðl ix; l iyÞ

jlj
i

, 1 ð2:2Þ

for all x, y [ X, where l U a þ b. Then, there exists a unique Euler–Lagrange additive

mapping A: X ! Y which satisfies the equation (1.3) and the inequality

k f ðxÞ2 AðxÞk #
1

2jlj

X1
i¼0

wðl ix; l ixÞ

jlj
i

ð2:3Þ

for all x [ X.

Extended Hyers–Ulam stability 1141
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Proof. Substituting x, y U x in the functional inequality (2.1), we obtain

2k f ðlxÞ2 lf ðxÞk # wðx; xÞ; f ðxÞ2
f ðlxÞ

l

����
���� #

1

2jlj
wðx; xÞ ð2:4Þ

for all x [ X. Therefore from (2.4) with l ix in place of x (i ¼ 1, . . . , n 2 1) and iterative

method, one gets

f ðxÞ2
f ðlnxÞ

ln

����
���� #

1

2jlj

Xn21

i¼0

wðl ix; l ixÞ

jlj
i

ð2:5Þ

for all x [ X and all n [ N. By (2.5), for any n . m $ 0 we have

f ðlmxÞ

lm
2

f ðlnxÞ

ln

����
���� #

1

jlj
m f ðlmxÞ2

f ðln2mlmxÞ

ln2m

����
���� #

1

2jlj

Xn2m21

i¼0

wðl iþmx; l iþmxÞ

jlj
iþm

;

which tends to zero as m tends to infinity. Thus, it follows that a sequence {ðf ðlnxÞÞ=ðlnÞ} is

Cauchy in Y and it thus converges. Therefore, we see that a mapping A: X ! Y defined by

AðxÞ U lim
n!1

f ðlnxÞ

ln
¼ lim

n!1

f ððaþ bÞnxÞ

ðaþ bÞn

exists for all x [ X. In addition, it is clear from (2.1) that the following inequality

kAðaxþ byÞ þ Aðbxþ ayÞ2 ðaþ bÞ½AðxÞ þ Að yÞ�k

¼ lim
n!1

jlj
2n
k f ðlnðaxþ byÞÞ þ f ðlnðbxþ ayÞÞ2 ðaþ bÞ½ f ðlnxÞ þ f ðlnyÞ�k

# lim
n!1

jlj
2n
wðlnx; lnyÞ ¼ 0

holds for all x, y [ X. Thus, taking the limit n ! 1 in (2.5), we find that the mapping A is

Euler–Lagrange additive mapping satisfying the inequality (2.3) near the approximate

mapping f :X ! Y of the equation (1.3).

To prove the afore-mentioned uniqueness, we assume now that there is another Euler–

Lagrange additive mapping �A : X ! Y which satisfies the equation (1.3) and the inequality

(2.3). Then, it follows easily that by setting y U x in (1.3) we get

AðxÞ ¼ l2nAðlnxÞ; �AðxÞ ¼ l2n �AðlnxÞ

for all x [ X and all n [ N. Thus from the last equality and (2.3) one proves that

kAðxÞ2 �AðxÞk ¼
1

jlj
n kAðl

nxÞ2 �AðlnxÞk

#
1

jlj
n ðkAðl

nxÞ2 f ðlnxÞk þ k f ðlnxÞ2 �AðlnxÞkÞ

#
X1
i¼0

wðl iþnx; l iþnxÞ

jlj
iþnþ1

for all x [ X and all n [ N. Therefore from n ! 1, one establishes

AðxÞ2 �AðxÞ ¼ 0

for all x [ X, completing the proof of uniqueness. A

K.-W. Jun et al.1142
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Theorem 2.2. Assume that there exists a mapping w : X 2 ! ½0;1Þ for which a mapping

f :X ! Y satisfies the inequality

k f ðaxþ byÞ þ f ðbxþ ayÞ2 ðaþ bÞ½ f ðxÞ þ f ð yÞ�k # wðx; yÞ

and the series X1
i¼1

jlj
i
w

x

l i
;
y

l i

� �
, 1

for all x, y [ X, where l U a þ b. Then there exists a unique Euler–Lagrange additive

mapping A : X ! Y which satisfies the equation (1.3) and the inequality

k f ðxÞ2 AðxÞk #
1

2jlj

X1
i¼1

jlj
i
w

x

l i
;
x

l i

� �

for all x [ X.

We obtain the following corollary concerning the stability for approximately Euler–

Lagrange additive mappings in terms of a product of powers of norms.

Corollary 2.3. If a mapping f : X ! Y satisfies the functional inequality

k f ðaxþ byÞ þ f ðbxþ ayÞ2 ðaþ bÞ½ f ðxÞ þ f ð yÞ�k # dkxk
a
kyk

b
;

for all x, y [ X (Xn{0} if a, b # 0) and for some fixed a, b [ R, such that r: a þ b [ R,

r – 1, l U a þ b – 1 and d $ 0, then there exists a unique Euler–Lagrange additive

mapping A : X ! Y which satisfies the equation (1.3) and the inequality

k f ðxÞ2 AðxÞk #

dkxk
r

2ðjlj2jlj
r
Þ
; if jlj . 1; r , 1; ðjlj , 1; r . 1; Þ

dkxk
r

2ðjlj
r
2jljÞ

; if jlj . 1; r . 1; ðjlj , 1; r , 1Þ

8><
>:

for all x [ X (Xn{0} if r # 0). The mapping A is defined by the formula

AðxÞ ¼

lim
n!1

f ðl nxÞ
l n ; if jlj . 1; r , 1; ðjlj , 1; r . 1; Þ

lim
n!1

lnf x
l n

� �
; if jlj . 1; r . 1; ðjlj , 1; r , 1Þ

8><
>:

Now we are going to investigate the stability problem of the Euler–Lagrange type

equation (1.4). Similarly, we remark that if l ¼ 1 in the next two theorems, then the mapping

w is identically zero by the convergence of series and thus f is itself the solution of the

equation (1.4). Thus, we may assume without loss of generality that l – 1 in these theorems.

Theorem 2.4. Assume that there exists a mapping w : X 2 ! ½0;1Þ for which a mapping f:

X ! Y satisfies the inequality

k f ðaxþ byÞ þ f ðax2 byÞ2 2af ðxÞk # wðx; yÞ ð2:6Þ

and the series

X1
i¼0

wðl ix; l iyÞ

jlj
i

, 1 ð2:7Þ

Extended Hyers–Ulam stability 1143
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for all x, y [ X, where l U 2a – 1. Then, there exists a unique additive mapping A : X ! Y

of Euler–Lagrange which satisfies the equation (1.4) and the inequality

f ðxÞ2
f ð0Þ

l2 1
2 AðxÞ

����
���� #

1

jlj

X1
i¼0

w l ix; a
b
l ix

� �
jlj

i

for all x [ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x [ X

then A(tx) ¼ tA(x) for all x [ X and t [ R.

Proof. Substituting (x, y) for (x, (a/b)x) in the functional inequality (2.6), we obtain

k f ð2axÞ þ f ð0Þ2 2af ðxÞk # w x;
a

b
x

� �
; gðxÞ2

gð2axÞ

2a

����
���� #

1

2jaj
w x;

a

b
x

� �
; ð2:8Þ

for all x [ X, where gðxÞ U f ðxÞ2 f ð0Þ=ð2a2 1Þ. From (2.8), one gets

gðxÞ2
gðlnxÞ

ln

����
���� #

1

jlj

Xn21

i¼0

w l ix; a
b
l ix

� �
jlj

i
ð2:9Þ

for all x [ X and all n [ N. Thus, it follows from (2.7) that a sequence {l2ngðlnxÞ} is

Cauchy in Y and it thus converges. Therefore, we see that a mapping A: X ! Y defined by

AðxÞ U lim
n!1

gðlnÞ

ln
¼ lim

n!1

f ðlnÞ

ln

exists for all x [ X. We observe that A(0) ¼ 0 since f ð0Þ ¼ 0 ¼ wð0; 0Þ by the convergence

of (2.7) if l ¼ 21 or jlj , 1, and that A(0) ¼ 0 by the definition of A if jlj . 1. Utilizing the

last functional inequality (2.9) and the similar argument to Theorem 2.1, we can obtain the

conclusion of this theorem.

The proof of the last assertion in our Theorem 2.4 is obvious according to J.M. Rassias

work [17]. A

Theorem 2.5. Assume that there exists a mapping w : X 2 ! ½0;1Þ for which a mapping

f : X ! Y satisfies the inequality

k f ðaxþ byÞ þ f ðax2 byÞ2 2af ðxÞk # wðx; yÞ
and the series X1

i¼1

jlj
i
w

x

l i
;
y

l i

� �
, 1 ð2:10Þ

for all x, y [ X, where l U 2a – 1. Then, there exists a unique additive mapping A:X ! Y of

Euler–Lagrange which satisfies the equation (1.4) and the inequality

f ðxÞ2
f ð0Þ

l2 1
2 AðxÞ

����
���� #

1

jlj

X1
i¼1

jlj
i
w

x

l i
;
a

b

x

l i

� �

for all x [ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x [ X

then A(tx) ¼ tA(x) for all x [ X and t [ R.

Corollary 2.6. If a mapping f: X ! Y satisfies the functional inequality

k f ðaxþ byÞ þ f ðax2 byÞ2 2af ðxÞk # dkxk
a
kyk

b
;

K.-W. Jun et al.1144
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for all x,y [ X (Xn{0} if a, b # 0) and for some fixed a, b [ R, such that r U aþ b [ R,

r – 1, l U 2a – 1 and d $ 0, then there exists a unique additive mapping A: X ! Y of

Euler–Lagrange which satisfies the equation (1.4) and the inequality

f ðxÞ2
f ð0Þ

2a2 1
2 AðxÞ

����
���� #

a
b

�� ��b dkxk
r

jlj2jlj
r ; if jlj . 1; r , 1; ðjlj , 1; r . 1; Þ

a
b

�� ��b dkxk
r

jlj
r
2jlj

; if jlj . 1; r . 1; ðjlj , 1; r , 1Þ

8><
>:

for all x [ XðXn{0} if r # 0Þ:

We will investigate under what conditions it is then possible to find a true additive Euler–

Lagrange mapping of equation (1.5) near an approximate additive Euler–Lagrange mapping

of equation (1.5) with small error.

Theorem 2.7. Assume that there exists a mapping w : X 2 ! ½0;1Þ for which a mapping f:

X ! Y satisfies the inequality

k f ðaxþ byÞ2 f ðax2 byÞ2 2bf ð yÞk # wðx; yÞ
and the series

X1
i¼0

wðl ix; l iyÞ

jlj
i

, 1
X1
i¼1

jlj
i
wðl2ix; l2iyÞ , 1; respectively

 !

for all x, y [ X, where l U 2b – 1. Then, there exists a unique additive mapping A: X ! Y

of Euler–Lagrange which satisfies the equation (1.5) and the inequality

f ðxÞ þ
f ð0Þ

l2 1
2 AðxÞ

����
���� #

1

jlj

X1
i¼0

w b
a
l ix; l ix

� �
jlj

i

f ðxÞ þ
f ð0Þ

l2 1
2 AðxÞ

����
���� #

1

jlj

X1
i¼1

jlj
i
w

b

a
l2ix; l2ix

� �
; respectively

 !

for all x [ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x [ X

then A(tx) ¼ tA(x) for all x [ X and t [ R.

Proof. The proof of this theorem is similar to that of Theorem 2.1 and Theorem 2.4. A

Corollary 2.8. If a mapping f: X ! Y satisfies the functional inequality

k f ðaxþ byÞ2 f ðax2 byÞ2 2bf ð yÞk # dkxk
a
kyk

b
;

for all x, y [ X (Xn{0} if a, b # 0) and for some fixed a, b [ R, such that r U aþ b [ R,

r – 1, l U 2b – 1 and d $ 0, then there exists a unique additive mapping A: X ! Y of

Euler–Lagrange which satisfies the equation (1.5) and the inequality

f ðxÞ þ
f ð0Þ

l2 1
2 AðxÞ

����
���� #

b
a

�� ��a dkxk
r

jlj2jlj
r ; if jlj . 1; r , 1; ðjlj , 1; r . 1; Þ

b
a

�� ��a dkxk
r

jlj
r
2jlj

; if jlj . 1; r . 1; ðjlj , 1; r , 1Þ

8><
>:

for all x [ XðXn{0} if r # 0Þ:

Extended Hyers–Ulam stability 1145
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3. C*-algebra isomorphisms between unital C*-algebras

Throughout this section, assume that A and B are unital C*-algebras. Let UðAÞ the unitary

group of A, Ain the set of invertible elements in A, Asa the set of self-adjoint elements in A,

A1 U {a [ A : jaj ¼ 1}, Aþ the set of positive elements in A. As an application, we are

going to investigate C*-algebra isomorphisms between unital C*-algebras. We denote N0 by

the set of nonnegative integers.

Theorem 3.1. Let h:A ! B be a bijective mapping with h(0) ¼ 0 for which there

exist mappings w : A2 ! Rþ U ½0;1Þ satisfying (2.7), c1 : A £A! Rþ, and c : A! Rþ

such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ; ð3:1Þ

khðlnuxÞ2 hðlnuÞhðxÞk # c1ðl
nu; xÞ; ð3:2Þ

khðlnu*Þ2 hðlnuÞ*k # cðlnuÞ ð3:3Þ

for all m [ S1 U {m [ C : jmj ¼ 1}, all u [ U(A), all x,y [ A and all n [ N0, where

l U 2a – 1. Assume that

lim
n!1

l2nc1ðl
nu; xÞ ¼ 0; for all u [ UðAÞ; x [ A; ð3:4Þ

lim
n!1

l2ncðlnuÞ ¼ 0; for all u [ UðAÞ; ð3:5Þ

lim
n!1

l2nhðlnu0Þ [ Bin; for some u0 [ A: ð3:6Þ

Then the bijective mapping h : A! B is in fact a C*-algebra isomorphism.

Proof. Consider the C*-algebras A and B as Banach left modules over the unital C*-algebra

C. From (2.7), (3.1) with m ¼ 1 and by Theorem 2.4, there exists a unique mapping

H : A! B, defined by HðxÞ U limn!1l
2nhðlnxÞ, satisfying the equation (1.4) and the

inequality

khðxÞ2 HðxÞk #
1

jlj

X1
i¼0

w l ix; a
b
l ix

� �
jlj

i
ð3:7Þ

for all x [ A. We claim that the mapping H is C-linear. For this, putting y U 0 in (1.4) one

has HðaxÞ ¼ aHðxÞ for all x [ A. Now replacing y by ðay=bÞ in (1.4) we get Hðaxþ ayÞ þ

Hðax2 ayÞ ¼ 2aHðxÞ and so Hðxþ yÞ þ Hðx2 yÞ ¼ 2HðxÞ, which means that H is additive.

On the other hand, we obtain by (2.7) and (3.1) that Hðamxþ bmyÞ þ Hðamx2 bmyÞ2

2amHðxÞ ¼ 0 for all x; y [ A and so

HðmxÞ2 mHðxÞ ¼ 0 ð3:8Þ

for all x [ A and all m [ S1 ¼ UðCÞ: Now, let h be a nonzero element in C and K

a positive integer greater than 4jhj. Then, we have jðh=KÞj , ð1=4Þ , 1 2 ð2=3Þ:

By Ref. [14, Theorem 1], there exist three elements m1;m2;m3 [ S1 such that
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3ðh=KÞ ¼ m1 þ m2 þ m3. Thus, we calculate by (3.8)

HðhxÞ ¼ H
K

3
·3
h

K
x

� �
¼

K

3

� �
Hðm1xþ m2xþ m3xÞ

¼
K

3

� �
ðHðm1xÞ þ Hðm2xÞ þ Hðm3xÞÞ

¼
K

3

� �
ðm1 þ m2 þ m3ÞHðxÞ ¼

K

3

� �
·3
h

K
gðxÞ ¼ hHðxÞ

for all h [ Cðh – 0Þ and all x [ A. So the unique mapping H : A! B is C-linear mapping,

as desired.

By (3.3) and (3.5), we have

Hðu*Þ ¼ lim
n!1

l2nhðlnu*Þ ¼ lim
n!1

l2nhðlnuÞ* ¼ lim
n!1

l2nhðlnuÞ
� �*

¼ HðuÞ* ð3:9Þ

for all u [ UðAÞ. Since each x [ A is a finite linear combination of unitary elements ([15,

Theorem 4.1.7]), i.e. x ¼
Pm

j¼1cjuj (cj [ C, uj [ UðAÞÞ, we get by (3.9)

Hðx*Þ ¼ H
Xm
j¼1

�cju
*
j

 !
¼
Xm
j¼1

�cjHðu*
j Þ ¼

Xm
j¼1

�cjHðujÞ
* ¼

Xm
j¼1

cjHðujÞ

 !

¼ H
Xm
j¼1

cjuj

 !
¼ HðxÞ*

for all x [ A. So the mapping H is preserved by involution.

Using the relations (3.2) and (3.4), we get

HðuxÞ ¼ lim
n!1

l2nhðlnuxÞ ¼ lim
n!1

l2nhðlnuÞhðxÞ ¼ HðuÞhðxÞ ð3:10Þ

for all u [ UðAÞ and all x [ A. On the other hand, it follows from (3.10) and the additivity

of H that the equation

HðuxÞ ¼ l2nHðlnuxÞ ¼ l2nHðulnxÞ ¼ l2nHðuÞhðlnxÞ ¼ HðuÞl2nhðlnxÞ

holds for all u [ UðAÞ and all x [ A. Taking the limit as n ! 1 in the last equation, we

obtain

HðuxÞ ¼ HðuÞHðxÞ ð3:11Þ

for all u [ UðAÞ and all x [ A. Now, let z [ A be an arbitrary element. Then z ¼
Pm

j¼1cjuj
(cj [ C, uj [ UðAÞÞ, and it follows from (3.10) that

HðzxÞ ¼ H
Xm
j¼1

cjujx

 !
¼
Xm
j¼1

cjHðujxÞ ¼
Xm
j¼1

cjHðujÞhðxÞ

¼ H
Xm
j¼1

cjuj

 !
hðxÞ ¼ HðzÞhðxÞ ð3:12Þ
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for all z; x [ A. Using the similar argument to (3.11), we see that

HðzxÞ ¼ HðzÞHðxÞ ð3:13Þ

for all z; x [ A. Hence, the mapping H is multiplicative.

Finally, it follows from (3.12) and (3.13) that

Hðu0ÞHðxÞ ¼ Hðu0xÞ ¼ Hðu0ÞhðxÞ

for all x [ A. Since Hðu0Þ ¼ limn!1l
2nhðlnu0Þ is invertible by (3.6), we see that HðxÞ ¼

hðxÞ for all x [ A. Hence, the bijective mapping h : A! B is in fact a C*-algebra

isomorphism, as desired. A

Theorem 3.2. Let h : A! B be a bijective mapping satisfying h(0) ¼ 0 and (3.6) for

which there exist a mapping w : A2 ! Rþ satisfying (2.7), and mappings c1;c such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ;

khðlnuxÞ2 hðlnuÞhðxÞk # c1ðl
nu; xÞ;

ð3:14Þ

khðlnu*Þ2 hðlnuÞ*k # cðlnuÞ ð3:15Þ

for all m [ S1 U {m [ C : jmj ¼ 1}, all u [ Aþ
1 < {i} and all x; y [ A and all n [ N0.

Assume that

lim
n!1

l2nc1ðl
nu; xÞ ¼ 0; for all u [ Aþ

1 < {i}; all x [ A; ð3:16Þ

lim
n!1

l2ncðlnuÞ ¼ 0; for all u [ Aþ
1 < {i}: ð3:17Þ

Then the bijective mapping h : A! B is in fact a C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a unique C-linear

mapping H : A! B, defined by HðxÞ U limn!1l
2nhðlnxÞ, satisfying the equation (1.4) and

the functional inequality (3.7).

By (3.15) and (3.17), we have Hðu*Þ ¼ HðuÞ* for all u [ Aþ
1 < {i}, and so

Hðv*Þ ¼ H jvj·
v*

jvj

� �
¼ jvjH

v*

jvj

� �
¼ jvjH

v

jvj

� �	 
*

¼ HðvÞ* ð3:18Þ

for all nonzero v [ Aþ < {i}. Now, for any element v [ A, v ¼ v1 þ iv2, where

v1; v2 [ Asa; furthermore, v ¼ vþ1 2 v21 þ ivþ2 2 iv22 , where vþ1 ; v
2
1 ; v

þ
2 and v22 are all

positive elements (see [2, Lemma 38.8]). Since H is C-linear, we figure out by (3.18)

Hðv*Þ ¼ H vþ1 2 v21 þ ivþ2 2 iv22
� �*
� �

¼ H vþ1
� �*

2H v21
� �*

þH ivþ2
� �*
� �

2 H iv22
� �*
� �

¼ H vþ1
� �*

2H v21
� �*

2iH vþ2
� �*

þiH v22
� �*

¼ H vþ1 2 v21 þ ivþ2 2 iv22
� �� �*

¼ HðvÞ*

for all v [ A.
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Using (3.14) and (3.16), we get HðuxÞ ¼ HðuÞhðxÞ for all u [ Aþ
1 < {i} and all x [ A,

and so HðvxÞ ¼ HðvÞhðxÞ for all v [ Aþ < {i} and all x [ A because

HðvxÞ ¼ H jvj
v

jvj
·x

� �
¼ jvjH

v

jvj
·x

� �

¼ jvjH
v

jvj

� �
·hðxÞ ¼ HðvÞhðxÞ; ;v [ Aþ:

ð3:19Þ

Now, for any element v [ A, v ¼ vþ1 2 v21 þ ivþ2 2 iv22 , where vþ1 ; v
2
1 ; v

þ
2 and v22 are

positive elements (see [2, Lemma 38.8]). Thus, we calculate by (3.19) and the additivity of H

HðvxÞ ¼ H vþ1 x2 v21 xþ ivþ2 x2 iv22 x
� �

¼ H vþ1 x
� �

2 H v21 x
� �

þ iH vþ2 x
� �

2 iH v22 x
� �

¼ H vþ1
� �

2 H v21
� �

þ iH vþ2
� �

2 iH v22
� �� �

hðxÞ

¼ HðvÞhðxÞ

ð3:20Þ

for all v; x [ A. By (3.20) and the additivity of H, one has

HðvxÞ ¼ l2nHðlnvxÞ ¼ l2nHðvlnxÞ ¼ l2nHðvÞhðlnxÞ ¼ HðvÞl2nhðlnxÞ;

which yields by taking the limit as n!1

HðvxÞ ¼ HðvÞHðxÞ ð3:21Þ

for all v; x [ A.

It follows from (3.20) and (3.21) that for a given u0 subject to (3.6)

Hðu0ÞHðxÞ ¼ Hðu0xÞ ¼ Hðu0ÞhðxÞ

for all x [ A. Since Hðu0Þ ¼ limn!1l
2nhðlnu0Þ [ Bin, we see that H(x) ¼ h(x) for all

x [ A. Hence, the bijective mapping h : A! B is a C*-algebra isomorphism, as

desired. A

Theorem 3.3. Let h : A! B be a bijective mapping with h(0) ¼ 0 satisfying (2.7), (3.2)

and (3.3) such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ ð3:22Þ

holds for m ¼ 1, i. Assume that the conditions (3.4)– (3.6) are satisfied, and that h is

measurable or h(tx) is continuous in t [ R for each fixed x [ A. Then, the bijective mapping

h : A! B is a C*-algebra isomorphism.

Proof. Fix m ¼ 1 in (3.22). By the same reasoning as in the proof of Theorem 3.1, there exists

a unique additive mapping H : A! B satisfying the equation (1.4) and the inequality (3.7).

By the assumption that h is measurable or h(tx) is continuous in t [ R for each fixed

x [ A, the mapping H : A! B is R-linear, that is, HðtxÞ ¼ tHðxÞ for all t [ R and all x [ A
[12,17,28]. Put l ¼ i in (3.22). Then applying the same argument to (3.8) as in the proof of

Theorem 3.1, we obtain that

HðixÞ ¼ iHðxÞ;
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and so for any m ¼ sþ it [ C

HðmxÞ ¼ Hðsxþ itxÞ ¼ HðsxÞ þ HðitxÞ ¼ sHðxÞ þ itHðxÞ ¼ ðsþ itÞHðxÞ ¼ mHðxÞ

for all x [ A. Hence, the mapping H : A! B is C-linear.

The rest of the proof is the same as the proof of Theorem 3.1. A

Theorem 3.4. Let h : A! B be a bijective mapping with h(0) ¼ 0 satisfying (2.7), (3.6),

(3.14) and (3.15) such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ ð3:23Þ

holds for m ¼ 1, i. Assume that the equations (3.16) and (3.17) are satisfied, and that h is

measurable or h(tx) is continuous in t [ R for each fixed x [ A. Then, the bijective mapping

h : A! B is a C*-algebra isomorphism.

Proof. The proof is the similar to that of Theorem 3.3. A

4. Derivations mapping into the radicals of Banach algebras

Throughout this section, assume that A is a complex Banach algebra with norm k·k. As an

application, we are going to investigate the stability of derivations on Banach algebras and to

consider the range of derivations on Banach algebras.

Lemma 4.1. Let h : A!A be a mapping satisfying h(0) ¼ 0 for which there exist a

mapping w : A2 ! Rþ satisfying (2.7) and a mapping c : A2 ! Rþ satisfying

lim
n!1

cðlnx;lnyÞ

jlj
2n

¼ 0 ð4:1Þ

for all x; y [ X, where l U 2a – 1, such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ; ð4:2Þ

khðxyÞ2 hðxÞy2 xhð yÞk # cðx; yÞ ð4:3Þ

for all m [ S1 U {m [ C : jmj ¼ 1} and all x; y [ A. Then, there exists a unique C-linear

derivation H : A!A which satisfies the inequality

khðxÞ2 HðxÞk #
1

jlj

X1
i¼0

w l ix; a
b
l ix

� �
jlj

i
ð4:4Þ

for all x [ A.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a unique C-linear

mapping H : A!A, defined by HðxÞ U limn!1l
2nhðlnxÞ; satisfying the equation (1.4) and

the functional inequality (4.4).
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Replacing x and y in (4.3) by l nx and l ny, respectively, and dividing the result by jlj2n,

we obtain

hðl2nxyÞ

l2n
2

hðlnxÞ

ln
y2 x

hðlnyÞ

ln

����
���� #

cðlnx; lnyÞ

jlj
2n

for all x; y [ A. Taking the limit in the last inequality, one obtains that

HðxyÞ2 HðxÞy2 xHð yÞ ¼ 0

for all x; y [ A because limn!1ðcðl
nx; lnyÞ=jlj

2n
Þ ¼ 0 and limn!1ðhðl

2nxyÞ=l2nÞ

¼ HðxyÞ. Thus, the mapping H : A!A is a unique C-linear derivation satisfying the

functional inequality (4.4). A

Lemma 4.2. Let h : A!A be a mapping satisfying hð0Þ ¼ 0 for which there exist a

mapping w : A2 ! Rþ satisfying (2.10) and a mapping c : A2 ! Rþ satisfying

lim
n!1

jlj
2n
c

x

ln
;
y

ln

� �
¼ 0

for all x; y [ X, where l U 2a – 1, such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # wðx; yÞ;

khðxyÞ2 hðxÞy2 xhð yÞk # cðx; yÞ

for all m [ S1 U {m [ C : jmj ¼ 1} and all x; y [ A. Then, there exists a unique C-linear

derivation H : A!A which satisfies the inequality

khðxÞ2 HðxÞk #
1

jlj

X1
i¼1

jlj
i
w

x

l i
;
a

b

x

l i

� �

for all x [ A.

Corollary 4.3. Let p;a;b be reals such that either p , 1, aþ b , 2; 1 , jl U 2aj or

p . 1, aþ b . 2, 1 . jl U 2aj . 0. Assume that h : A!A is a mapping satisfying

h(0) ¼ 0 for which there exist nonnegative constants 11, 12, such that

khðamxþ bmyÞ þ hðamx2 bmyÞ2 2amhðxÞk # 11ðkxk
p
þ kyk

p
Þ;

khðxyÞ2 hðxÞy2 xhð yÞk # 12kxk
a
kyk

b

for all m [ S1 U {m [ C : jmj ¼ 1} and all x; y [ A. Then, there exists a unique C-linear

derivation H : A!A which satisfies the inequality

khðxÞ2 HðxÞk #
11kxk

p
1 þ a

b

�� ��p� �
j jlj2 jlj

p
j

for all x [ A.
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Lemma 4.4. Let h : A!A be a linear mapping for which there exists a mapping c :

A2 ! Rþ satisfying either

lim
n!1

cðlnx; lnyÞ

jlj
2n

¼ 0 or; lim
n!1

jlj
2n
c

x

ln
;
y

ln

� �
¼ 0

for all x; y [ X, where l U 2a – 0; 1, such that

khðxyÞ2 hðxÞy2 xhð yÞk # c ðx; yÞ

for all x; y [ A. Then, the mapping h is in fact a derivation on A.

Proof. Taking wðx; yÞ U 0 in the previous two lemmas, then we have the desired result. A

Theorem 4.5. Let A be a commutative Banach algebra. Let h : A!A be a given linear

mapping and an approximate derivation with difference Dh bounded by c, that is, there

exists a mapping c : A £A! Rþ such that

kDhðx; yÞ U hðxyÞ2 hðxÞy2 xhð yÞk # cðx; yÞ ð4:5Þ

for all x; y [ A. Assume that there exists a nonzero real number l with l – 1 such that

the limit

lim
n!1

cðlnx; lnyÞ

jlj
2n

¼ 0 lim
n!1

jlj
2n
c

x

ln
;
y

ln

� �
¼ 0; respectively

� �
ð4:6Þ

for all x; y [ A. Then, the mapping h is in fact a linear derivation and maps the algebra into

its radical.

Proof. By Lemma 4.4, the mapping h is in fact a linear derivation and maps the algebra into

its radical by Thomas’ result [30]. A

It is well-known that all linear derivations on commutative semi-simple Banach algebras

are zero [30]. We remark that every linear mapping h on a commutative semi-simple Banach

algebra, which is an approximate derivation satisfying (4.5) and (4.6), is also zero.

References

[1] Aczél, J., 1966, Lectures on Functional Equations and their Applications (New York and London: Academic
Press).

[2] Bonsall, F. and Duncan, J., 1973, Complete Normed Algebras (New York, Heidelberg and Berlin: Springer-
Verlag).

[3] Bourgin, D.G., 1951, Classes of transformations and bordering transformations. Bulletin of the American
Mathematical Society, 57, 223–237.

[4] Cholewa, P.W., 1984, Remarks on the stability of functional equations. Aequationes Mathematicae, 27, 76–86.
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