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Abstract

In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved this prob-
lem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper
we generalize the Hyers result for the Ulam stability problem for Jensen type mappings, by considering
approximately Jensen type mappings satisfying conditions weaker than the Hyers condition, in terms of
products of powers of norms. This process leads to a refinement of the well-known Hyers–Ulam approxi-
mation for the Ulam stability problem. Besides we introduce additive mappings of the first and second form
and investigate pertinent stability results for these mappings. Also we introduce approximately Jensen type
mappings and prove that these mappings can be exactly Jensen type, respectively. These stability results
can be applied in stochastic analysis, financial and actuarial mathematics, as well as in psychology and
sociology.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

En 1940 S.M. Ulam proposés le problème célèbre de stabilité d’ Ulam. En 1941 D.H. Hyers a résolu ce
problème pour les tracés additifs sujet à la condition de Hyers sur les tracés approximativement additifs.
Dans cet article nous généralisons le résultat de Hyers pour le problème de stabilité d’ Ulam pour le type
tracés de Jensen, en considérant approximativement le type tracés de Jensen satisfaisant des conditions plus
faibles que la condition de Hyers, en termes de produits des puissances des normes. Ce processus mène à une
amélioration de l’approximation bien connue de Hyers–Ulam pour le problème de stabilité d’ Ulam. Sans
compter que nous présentons les tracés additifs de la première et deuxième forme et étudions des résultats
convenables de stabilité pour ces tracés. En outre nous présentons approximativement le type tracés de
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Jensen et montrons que ces tracés peuvent être exactement type de Jensen, respectivement. Ces résultats de
stabilité peuvent être appliqués dans l’analyse stochastique, mathématiques financières et actuarielles, aussi
bien qu’en la psychologie et la sociologie.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1940 and in 1964 S.M. Ulam [26] proposed the famous Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one can still assert that
the thesis of the theorem remains true or approximately true?”

In 1941 D.H. Hyers [13] solved this stability problem for additive mappings subject to the
Hyers condition∥∥f (x1 + x2) − f (x1) − f (x2)

∥∥ � δ (∗)

on approximately additive mappings f :X → Y , for a fixed δ � 0, and all x1, x2 ∈ X, where X

is a real normed space and Y a real Banach space.
In 1951 D.G. Bourgin [3] was the second author to treat the Ulam problem for additive map-

pings. In 1978, according to P.M. Gruber [12], this kind of stability problems is of particular
interest in probability theory and in the case of functional equations of different types. In 1980
and in 1987, I. Fenyö [7,8] established the stability of the Ulam problem for quadratic and other
mappings. In 1987 Z. Gajda and R. Ger [10] showed that one can get analogous stability results
for subadditive multifunctions. Other interesting stability results have been achieved also by the
following authors: J. Aczél [1], C. Borelli and G.L. Forti [2,9], P.W. Cholewa [4], St. Czerwik [5],
and H. Drljevic [6]. In 1982–2005 J.M. Rassias [16–21,23–25] and in 2003 M.J. Rassias and the
author [22,25] solved the above Ulam problem for Jensen and Euler–Lagrange type mappings.
In 1999 P. Gavruta [11] answered a question of ours [18] concerning the stability of the Cauchy
equation. In 1998 S.-M. Jung [14] and in 2002–2003 M.J. Rassias and the author [21,22] inves-
tigated the Hyers–Ulam stability for additive and quadratic mappings on restricted domains. In
this paper we generalize the Hyers result for the Ulam stability problem, by considering approx-
imately Jensen and Jensen type mappings satisfying conditions weaker than the Hyers condition
on approximately Jensen and Jensen type mappings, in terms of products of powers of norms.
Besides we introduce additive mappings of the first and second form and investigate pertinent
stability results for these mappings. Also we introduce approximately Jensen and Jensen type
mappings being exactly Jensen and Jensen type, respectively. These stability results can be ap-
plied in stochastic analysis [15], financial and actuarial mathematics, as well as in psychology
and sociology.

Throughout this paper, let X be a real normed space and Y be a real Banach space in the case
of functional inequalities, as well as let X and Y be real linear spaces for functional equations.
Besides let us denote with N = {1,2,3, . . .} the set of natural numbers and R the set of real
numbers.
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Definition 1.1. A mapping A :X → Y is called additive of the first form if A satisfies the func-
tional equation

A(x1 + x2) + A(x1 − x2) = 2A(x1) (1.1)

for all x1, x2 ∈ X and A(0) = 0. We note that (1.1) is equivalent to the Jensen equation

A

(
x + y

2

)
= 1

2

[
A(x) + A(y)

]
, (1.1a)

or

2A

(
x + y

2

)
= A(x) + A(y) (1.1b)

for x = x1 + x2, y = x1 − x2. A mapping A :X → Y is called Jensen mapping if A satisfies the
functional equation (1.1a) (or (1.1b)) and A(0) = 0.

Definition 1.2. A mapping A :X → Y is called additive of the second form if A satisfies the
functional equation

A(x1 + x2) − A(x1 − x2) = 2A(x2) (1.2)

for all x1, x2 ∈ X. We note that (1.2) is equivalent to the Jensen type equation

A

(
x − y

2

)
= 1

2

[
A(x) − A(y)

]
, (1.2a)

or

2A

(
x − y

2

)
= A(x) − A(y) (1.2b)

for x = x1 + x2, y = x1 − x2. A mapping A :X → Y is called Jensen type mapping if A satisfies
the functional equations (1.2a) (or (1.2b)).

Definition 1.3. A mapping A :X → Y is called additive if A satisfies the functional equation

A(x1 + x2) = A(x1) + A(x2) (1.3)

for all x1, x2 ∈ X. We note that Eq. (1.3) is called also Cauchy additive.

Definition 1.4. A mapping f :X → Y is called approximately odd if f satisfies the functional
inequality∥∥f (x) + f (−x)

∥∥ � θ (1.4)

for some fixed θ � 0 and for all x ∈ X.

In 1982 [16], 1984 [17], 1989 [18] and 1994 [19], we introduced and proved the following
Theorem 1.1 for the complete solution of the Ulam stability problem for additive mappings satis-
fying a condition weaker than the Hyers condition (∗) [13] on approximately additive mappings,
in terms of a product of powers of norms.

Theorem 1.1. If a mapping f :X → Y satisfies the approximately additive inequality∥∥f (x1 + x2) − f (x1) − f (x2)
∥∥ � δ‖x1‖α‖x2‖β, (1.5)
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for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0, and all x1, x2 ∈ X, then
there exists a unique additive mapping A :X → Y , which satisfies the formula

A(x) = lim
n→∞

{
2−nf (2nx), if − ∞ < ρ < 1,

2nf (2−nx), if ρ > 1

and the inequality∥∥f (x) − A(x)
∥∥ � δ

|2 − 2ρ | ‖x‖ρ

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

We note that the Hyers condition (∗) on approximately additive mappings is the corresponding
inequality (1.5), when α = β = 0.

2. Stability of the additive equation (1.1) of the first form

We introduce and prove the following new stability theorem 2.1 for additive mappings of the
first form.

Theorem 2.1. If a mapping f :X → Y satisfies the approximately additive inequality∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)
∥∥ � δ‖x1‖α‖x2‖β, (2.1)

of the first form for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0, and all
x1, x2 ∈ X, then there exists a unique additive mapping A :X → Y of the first form, which satis-
fies the formula

A(x) = lim
n→∞

{
2−nf (2nx), if − ∞ < ρ < 1,

2nf (2−nx), if ρ > 1 and f (0) = 0

and the inequality

∥∥f (x) − A(x)
∥∥ �

{
‖f (0)‖ + δ

2−2ρ ‖x‖ρ, if − ∞ < ρ < 1,
δ

2ρ−2‖x‖ρ, if ρ > 1 and f (0) = 0
(2.2)

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

We note that the Hyers condition (∗) on approximately additive mappings of the first form is
the corresponding inequality (2.1), when α = β = 0.

Proof. Substituting x1 = 0, x2 = x in the inequality (2.1), one gets

f (−x) = −f (x) + 2f (0), (2.3)

for all x ∈ X. Besides replacing x1 = x2 = x in the inequality (2.1) and then employing the
triangle inequality, one obtains the basic inequality

∥∥f (x) − 2−1f (2x)
∥∥ � 1∥∥f (0)

∥∥ + 1
δ‖x‖ρ, (2.4)
2 2
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for some δ � 0, −∞ < ρ < 1, and all x ∈ X. Then by the triangle inequality, and without induc-
tion, we establish the general inequality∥∥f (x) − 2−nf

(
2nx

)∥∥ �
∥∥f (x) − 2−1f (2x)

∥∥ + 2−1
∥∥f (2x) − 2−1f

(
22x

)∥∥ + · · ·
+ 2−(n−1)

∥∥f
(
2n−1x

) − 2−1f
(
2nx

)∥∥
= 1

2

{[
1 + 2−1 + · · · + 2−(n−1)

]∥∥f (0)
∥∥

+ [
1 + 2ρ−1 + · · · + 2(n−1)(ρ−1)

]
δ‖x‖ρ

}
= (

1 − 2−n
)∥∥f (0)

∥∥ + 1 − 2n(ρ−1)

2 − 2ρ
δ‖x‖ρ (2.5)

for all n ∈ N. Thus from this inequality (2.5) and letting n → ∞, we get the inequality

∥∥f (x) − A(x)
∥∥ �

∥∥f (0)
∥∥ + δ

2 − 2ρ
‖x‖ρ, if − ∞ < ρ < 1. (2.6)

We easily prove as in [16–19] that the formula

A(x) = 2−nA
(
2nx

)
holds for any n ∈ N, and all x ∈ X.

It is clear that for n � m > 0, we have∥∥2−nf
(
2nx

) − 2−mf
(
2mx

)∥∥ <
(
δ + ∥∥f (0)

∥∥) · 2−m → 0, as m → ∞.

Therefore we may apply a direct method to the definition of A, such that the formula

A(x) = lim
n→∞ 2−nf

(
2nx

)
holds for all x ∈ X [16–19]. From this formula and the inequality (2.1), it follows that A :X → Y

is an additive mapping of the first form.
The proof of the uniqueness of A :X → Y and the last assertion in our Theorem 2.1 is obvious

according to our works [16–19].
Similarly we prove the other part for ρ > 1 and f (0) = 0. In fact, setting x1 = x2 = x/2 in

the inequality (2.1) and assuming f (0) = 0, we establish the other basic inequality

∥∥f (x) − 2f
(
2−1x

)∥∥ � 1

2
δ21−ρ‖x‖ρ. (2.7)

Then we find the other general inequality∥∥f (x) − 2nf
(
2−nx

)∥∥ �
∥∥f (x) − 21f

(
2−1x

)∥∥ + 21
∥∥f

(
2−1x

) − 22f
(
2−2x

)∥∥ + · · ·
+ 2n−1

∥∥f
(
2−(n−1)x

) − 21f
(
2−nx

)∥∥
= 1

2
21−ρ

[
1 + 21−ρ + · · · + 2(n−1)(1−ρ)

]
δ‖x‖ρ

= 1 − 2n(1−ρ)

2ρ − 2
δ‖x‖ρ (2.8)

for all n ∈ N. Thus from this inequality (2.8) and the formula

A(x) = lim 2nf
(
2−nx

)
,

n→∞
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and letting n → ∞,we get the inequality∥∥f (x) − A(x)
∥∥ � δ

2ρ − 2
‖x‖ρ, if ρ > 1, (2.9)

and if f (0) = 0. Therefore the proof of the inequality (2.2) is complete.
The rest of the proof is omitted as similar to the corresponding proof in our theorems [16–

19]. �
Corollary 2.1. If a mapping f :X → Y satisfies f (0) = 0 and the approximately additive in-
equality∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)

∥∥ � δ‖x1‖α‖x2‖β,

of the first form for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0, and all
x1, x2 ∈ X, then there exists a unique additive mapping A :X → Y of the first form, which satis-
fies the formula

A(x) = lim
n→∞

{
2−nf (2nx), if − ∞ < ρ < 1,

2nf (2−nx), if ρ > 1

and the inequality∥∥f (x) − A(x)
∥∥ � δ

|2 − 2ρ | ‖x‖ρ

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

3. Stability of the additive equation (1.2) of the second form

We introduce and prove the following new stability Theorem 3.1 for additive mappings of the
second form.

Theorem 3.1. If a mapping f :X → Y satisfies the approximately additive inequality∥∥f (x1 + x2) − f (x1 − x2) − 2f (x2)
∥∥ � δ‖x1‖α‖x2‖β (3.1)

of the second form for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0 and for
all x1, x2 ∈ X, then there exists a unique additive mapping A :X → Y of the second form, which
satisfies the formula

A(x) = lim
n→∞

{
2−nf (2nx), if − ∞ < ρ < 1,

2nf (2−nx), if ρ > 1

and the inequality∥∥f (x) − A(x)
∥∥ � δ

|2 − 2ρ | ‖x‖ρ (3.2)

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X,
then A(tx) = tA(x) for all x ∈ X and t ∈ R.

We note that the Hyers condition (∗) on approximately additive mappings of the second form
is the corresponding inequality (3.1), when α = β = 0.
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Proof. Replacing x1 = x2 = 0 in (3.1), we find

f (0) = 0. (3.3)

Substituting x1 = 0, x2 = x in the inequality (3.1), one gets f (−x) = −f (x).
Besides, substituting x1 = x2 = x in (3.1), one gets

∥∥f (x) − 2−1f (2x)
∥∥ � 1

2
δ‖x‖ρ, (3.4)

for some δ � 0, −∞ < ρ < 1, and all x ∈ X. Therefore from (3.4) and the triangle inequality,
we obtain∥∥f (x) − 2−nf

(
2nx

)∥∥ �
∥∥f (x) − 2−1f (2x)

∥∥ + 2−1
∥∥f (2x) − 2−1f

(
22x

)∥∥ + · · ·
+ 2−(n−1)

∥∥f
(
2n−1x

) − 2−1f
(
2nx

)∥∥
= 1

2

[
1 + 2ρ−1 + · · · + 2(n−1)(ρ−1)

]
δ‖x‖ρ

= 1 − 2n(ρ−1)

2 − 2ρ
δ‖x‖ρ (3.5)

for some δ � 0, −∞ < ρ < 1, any n ∈ N, and all x ∈ X.
We easily prove as in [16–19] that

A(x) = 2−nA
(
2nx

)
holds for any n ∈ N, and all x ∈ X.

It is clear that for n � m > 0, we have∥∥2−nf
(
2nx

) − 2−mf
(
2mx

)∥∥ <
(
δ + ∥∥f (0)

∥∥) · 2−m → 0, as m → ∞.

Therefore we may apply a direct method to the definition of A, such that the formula

A(x) = lim
n→∞ 2−nf

(
2nx

)
holds for all x ∈ X [16–19]. From this formula and the inequality (3.1), it follows that A :X → Y

is an additive mapping of the second form.
The proof of the uniqueness of A :X → Y and the last assertion in our Theorem 3.1 is obvious

according to our works [16–19].
Similarly we prove the other part for ρ > 1 and f (0) = 0. In fact, setting x1 = x2 = x/2 in

the inequality (3.1), we establish the other basic inequality

∥∥f (x) − 2f
(
2−1x

)∥∥ � 1

2
δ21−ρ‖x‖ρ. (3.6)

Then we find the other general inequality∥∥f (x) − 2nf
(
2−nx

)∥∥ �
∥∥f (x) − 21f

(
2−1x

)∥∥ + 21
∥∥f

(
2−1x

) − 22f
(
2−2x

)∥∥ + · · ·
+ 2n−1

∥∥f
(
2−(n−1)x

) − 21f
(
2−nx

)∥∥
= 1

2
21−ρ

[
1 + 21−ρ + · · · + 2(n−1)(1−ρ)

]
δ‖x‖ρ

= 1 − 2n(1−ρ)

ρ
δ‖x‖ρ (3.7)
2 − 2
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for all n ∈ N. Thus from this inequality and the formula

A(x) = lim
n→∞ 2nf

(
2−nx

)
,

and letting n → ∞, we get the inequality∥∥f (x) − A(x)
∥∥ � δ

2ρ − 2
‖x‖ρ, if ρ > 1. (3.8)

Therefore the proof of the inequality (3.2) is complete.
The rest of the proof is omitted as similar to the corresponding proof in our theorems [16–

19]. �
4. Superstability of the Jensen equation (1.1b)

A functional equation E(f ) = 0 is called superstable if every approximate solution of this
equation is an exact (or genuine) solution.

We establish the following new superstability theorem 4.1 and superstability corollary 4.1 for
Jensen mappings.

Theorem 4.1. If a mapping f :X → Y satisfies the approximately Jensen inequality∥∥∥∥2f

(
x1 + x2

2

)
− f (x1) − f (x2)

∥∥∥∥ � δ‖x1‖α‖x2‖β, (4.1)

for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0 and for all x1, x2 ∈ X, then
there exists a unique Jensen mapping A :X → Y , satisfying the formula

A(x) = lim
n→∞ 2−nf

(
2nx

)
and the equation

f (x) − A(x) = f (0) (4.2)

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

We note that the Hyers condition (∗) on approximately Jensen mappings is the corresponding
inequality (4.1), when α = β = 0.

Proof. Setting x1 = x, x2 = −x in the inequality (4.1), we find∥∥f (−x) + f (x)
∥∥ � 2

∥∥f (0)
∥∥ + δ‖x‖ρ.

Substituting x1 = 2x and x2 = 0 in (4.1), one gets

f (x) − 2−1f (2x) = 1

2
f (0), (4.3)

for all x ∈ X. Therefore, we obtain

f (x) − 2−nf
(
2nx

) = (
1 − 2−n

)
f (0), (4.4)

for any n ∈ N, and all x ∈ X. The rest of the proof is omitted as similar to the proof of Theo-
rem 3.1. �
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Corollary 4.1. If a mapping f :X → Y satisfies f (0) = 0 and the approximately Jensen inequal-
ity ∥∥∥∥2f

(
x1 + x2

2

)
− f (x1) − f (x2)

∥∥∥∥ � δ‖x1‖α‖x2‖β, (4.1)

for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0 and for all x1, x2 ∈ X, then
there exists a unique Jensen mapping A :X → Y , satisfying the formula

A(x) = lim
n→∞ 2−nf

(
2nx

)
and the equation

f (x) = A(x) (4.2)

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

From (4.1)–(4.2) with f (0) = 0 we note that there exist approximately Jensen map-
pings f :X → Y which can be exactly Jensen mappings A :X → Y . We define an equation
E(A) = 0 (∗∗) as superstable if every approximate solution of (∗∗) is an exact solution.

5. Superstability of the Jensen type equation (1.2b)

We establish the following new superstability theorem 5.1 for Jensen type mappings.

Theorem 5.1. If a mapping f :X → Y satisfies the approximately Jensen type inequality∥∥∥∥2f

(
x1 − x2

2

)
− f (x1) + f (x2)

∥∥∥∥ � δ‖x1‖α‖x2‖β, (5.1)

for some fixed α,β ∈ R, such that ρ = α + β ∈ R, ρ �= 1, and δ � 0 and for all x1, x2 ∈ X, then
there exists a unique Jensen type mapping A :X → Y , satisfying the formula

A(x) = lim
n→∞ 2−nf

(
2nx

)
and the equation

f (x) = A(x) (5.2)

for all x ∈ X. If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X then
A(tx) = tA(x) for all x ∈ X and t ∈ R.

We note that the Hyers condition (∗) on approximately Jensen type mappings is the corre-
sponding inequality (5.1), when α = β = 0.

Besides from (5.1)–(5.2) we note that there exist approximately Jensen type mappings
f :X → Y which can be exactly Jensen type mappings A :X → Y .

Proof. Replacing x1 = x2 = 0 in the inequality (5.1), we find f (0) = 0. Thus setting x1 =
x, x2 = −x in (5.1), one finds∥∥f (−x) + f (x)

∥∥ � δ‖x‖ρ.
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Substituting x1 = 2x and x2 = 0 in (5.1), one gets f (x) = 2−1f (2x), and thus by (or without)
induction on n ∈ N, we obtain

f (x) = 2−nf
(
2nx

)
, (5.3)

for any n ∈ N, and all x ∈ X. The rest of the proof is omitted as similar to the proof of Theo-
rems 3.1 and 4.1. �
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