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2 MATINA JOHN RASSIAS AND JOHN M ICHAEL RASSIAS

1. I NTRODUCTION

In 1940 (and 1968) S. M. Ulam [28] proposedthe Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one

can still assert that the thesis of the theorem remains true or approximately true ?”

In particular he statedthe stability question:
“Let G1 be a group and G2 a metric group with the metricρ (·, ·) Given a constantδ > 0, does
there exist a constantc > 0 such that if a mappingf : G1 → G2 satisfies
ρ (f (xy) , f (x) f (y)) < c for all x, y ∈ G1, then a unique homomorphismh : G1 → G2 exists
with ρ (f (x) , h (x)) < δ for all x ∈ G1?”

In 1941 D.H. Hyers [13] solved this problem for linear mappings. In 1951, D.G. Bourgin [3]
was the second author to treat the Ulam problem for additive mappings. In 1978, according to
P.M. Gruber [12], this kind of stability problems is of particular interest in probability theory
and in the case of functional equations of different types. In 1980 and in 1987, I. Fenyö [7],
[8] established the stability of the Ulam problem for quadratic and other mappings. In 1987
Z. Gajda and R. Ger [10] showed that one can get analogous stability results for subadditive
multifunctions. Other interesting stability results have been achieved also by the following
authors: J. Aczél [1], C. Borelli and G.L. Forti [2], [9], P.W. Cholewa [4], St. Czerwik [5],
and H. Drljevic [6], and Pl. Kannappan [15]. In 1982-2004, J.M. Rassias [16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27] solved the above Ulam problem for different mappings. In 1999, P.
Gǎvruţ̌a [11] answered a question of J.M. Rassias [18] concerning the stability of the Cauchy
equation. In 1998, S.-M. Jung [14] and in 2002-2003 we [25, 26] investigated the Hyers-Ulam
stability for additive and quadratic mappings on restricted domains. In 1992-2000 the second
author ([19, 21, 22, 23, 24]) investigated the Ulam stability for Euler-Lagrange mappings.

In this article we solve the Ulam stability problem for Euler-Lagrange type quadratic func-
tional equations.

Throughout this paper, letX be a real normed space andY be a real Banach space in the case
of functional inequalities, as well as letX andY be real linear spaces for functional equations.

Let us introduce the Euler-Lagrange type quadratic functional equation

Q (m1a1x1 + m2a2x2) + m1m2Q (a2x1 − a1x2)(1.1)

=
(
m1a

2
1 + m2a

2
2

)
[m1Q (x1) + m2Q (x2)]

with mappingsQ : X → Y , for all x1, x2 ∈ X, and any fixed pair(a1, a2) of realsai 6= 0 and
any fixed pair(m1, m2) of positive realsmi(i = 1, 2) : 0 < m = m1+m2

m1m2+1
(m1a

2
1 + m2a

2
2) 6= 1.

Definition 1.1. A mappingQ : X → Y is calledEuler-Lagrange type quadratic, if the above-
mentioned functional equation (1.1) holds for every(x1, x2, . . . , xp) ∈ Xp with an arbitrary but
fixedp = 2, 3, 4, . . .

In this paper, we establish an approximation of approximately Euler-Lagrange type quadratic
mappingsf : X → Y by Euler-Lagrange type quadratic mappingsQ : X → Y , such that the
corresponding functional inequality

‖f (m1a1x1 + m2a2x2) + m1m2f (a2x1 − a1x2)(1.2)

−
(
m1a

2
1 + m2a

2
2

)
[m1f (x1) + m2f (x2)] ‖

≤ c

holds with a constantc ≥ 0 (independent ofx1, x2 ∈ X).
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ON THE ULAM STABILITY FOR EULER-LAGRANGE TYPE QUADRATIC FUNCTIONAL EQUATIONS 3

It is useful for the following, to observe that, from (1.1) withx1 = x2 = 0, and0 < m 6= 1,
we get(m1m2 + 1) |1−m|Q (0) = 0, or

(1.3) Q(0) = 0.

Similarly, from (1.2), one finds(m1m2 + 1) |1−m| ‖f (0)‖ ≤ c, or

(1.4) ‖f (0)‖ ≤ c

(m1m2 + 1) |1−m|
=

c

m1m2 + 1


1

m−1
, if m > 1

1
1−m

, if 0 < m < 1.

Let us denote

(1.5) Q (x) = m0


m1Q

�
a1
m0

x
�
+m2Q

�
a2
m0

x
�

m
, if m > 1

m
[
m1Q

(
b1
m0

x
)

+ m2Q
(

b2
m0

x
)]

, if 0 < m < 1,

andbi = ai

m
(i = 1, 2) andm0 = (m1+m2)

(m1m2+1)
, as well as

(1.6) Q (x) =
1

m0m1


Q(m1a1x)+m1m2Q(a2x)

m
, if m > 1

m [Q (m1b1x) + m1m2Q (b2x)] , if 0 < m < 1,

for all x ∈ X.

Definition 1.2. Let X andY be real linear spaces andm > 1. Then the following equation

(1.7) F a (Q) = Q (m1a1x) + m1m2Q (a2x)−m2
0m1

[
m1Q

(
a1

m0

x

)
+ m2Q

(
a2

m0

x

)]
= 0,

is calledfundamental functional equation of first type. This (1.7) is equivalent to

(1.8) (Ma (Q) =)
F a (Q)

m0m1m
= Q (x)−Q (x) = 0, m > 1.

Note that ifX andY are real normed linear spaces andm > 1, then

(1.9) ‖F a (f)‖ ≤ ε1,

with a constantε1 ≥ 0 (independent ofx1, x2 ∈ X). This inequality (1.9) is equivalent to

(1.10) (‖Ma (f)‖ =)
1

m0m1m
‖Fa (f)‖ =

∥∥∥f (x)− f (x)
∥∥∥ ≤ ε1

m0m1m
, m > 1.

Definition 1.3. Let X andY be real linear spaces,bi = ai

m
(i = 1, 2) and0 < m < 1. Then

(1.11) F b (Q) = Q (m1b1x) + m1m2Q (b2x)−m2
0m1

[
m1Q

(
b1

m0

x

)
+ m2Q

(
b2

m0

x

)]
= 0

is calledfundamental functional equation of second type. This (1.11) is equivalent to

(1.12)
(
M b (Q) =

) m

m0m1

F b (Q) = Q (x)−Q (x) = 0, 0 < m < 1.
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4 MATINA JOHN RASSIAS AND JOHN M ICHAEL RASSIAS

Note that ifX andY are real normed linear spaces and0 < m < 1, then

(1.13)
∥∥F b (f)

∥∥ ≤ ε2,

with a constantε2 ≥ 0 (independent ofx1, x2 ∈ X). This inequality (1.13) is equivalent to

(1.14)
(∥∥M b (f)

∥∥ =
) m

m0m1

∥∥F b (f)
∥∥ =

∥∥∥f (x)− f (x)
∥∥∥ ≤ m

m0m1

ε2, 0 < m < 1.

Now, claim that forn ∈ N0 = N
⋃
{0} = {0, 1, 2, ...}

(1.15) Q (x) =

 m−2nQ (mnx) , if m > 1

m2nQ (m−nx) , if 0 < m < 1

holds for allx ∈ X.
Let us consider firstthe casem > 1. Forn = 0 , it is trivial. From (1.3), (1.5) and (1.1), with

xi = ai

m0
x (i = 1, 2), we obtain

Q (mx) = mm0

[
m1Q

(
a1

m0

x

)
+ m2Q

(
a2

m0

x

)]
,

or

(1.16) Q (x) = m−2Q (mx) .

Besides from (1.3), (1.6) and (1.1), withx1 = x, x2 = 0, one gets

Q (m1a1x) + m1m2Q (a2x) = mm0m1Q (x) ,

or

(1.17) Q (x) = Q (x) .

Therefore from (1.8), (1.16) and (1.17) we have

(1.18) Q (x) = m−2Q (mx) ,

which is (1.15) forn = 1, andm > 1. Assume (1.15),m > 1, is true and from (1.18), with
mnx on place ofx, we get :

(1.19) Q
(
mn+1x

)
= m2Q (mnx) = m2 (mn)2 Q (x) =

(
mn+1

)2
Q (x) .

This formula (1.19), by induction, proves formula (1.15) form > 1.
Let us consider nowthe case0 < m < 1. Similarly from (1.3), (1.5) and (1.1), withxi =

ai

m0

x
m

(i = 1, 2), we obtain

Q (x) = mm0

[
m1Q

(
a1

m0

x

m

)
+ m2Q

(
a2

m0

x

m

)]
,

or

(1.20) Q (x) = Q (x) .

Besides from (1.3), (1.6) and (1.1), withx1 = x
m

, x2 = 0, one gets

Q
(m1a1

m
x
)

+ m1m2Q
(a2

m
x
)

= mm0m1Q
( x

m

)
,

or

(1.21) Q (x) = m2Q
(
m−1x

)
.
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Therefore from (1.12), (1.20) and (1.21) we have

(1.22) Q (x) = m2Q
(
m−1x

)
,

which is (1.15) forn = 1, and0 < m < 1.
Assume (1.15),0 < m < 1, is true and from (1.22), withm−nx on place ofx, we get :

(1.23) Q
(
m−(n+1)x

)
= m−2Q

(
m−nx

)
= m−2

(
m−n

)2
Q (x) =

(
m−(n+1)

)2
Q (x) .

This formula (1.23), by induction, proves formula (1.15) for0 < m < 1.

2. ULAM STABILITY FOR EULER -L AGRANGE TYPE QUADRATIC FUNCTIONAL

EQUATIONS

Theorem 2.1. Let X andY be real normed linear spaces. Assume thatY is complete. Take
0 < m = m1+m2

m1m2+1
(m1a

2
1 + m2a

2
2) 6= 1 for any fixed non-zero realsai and positive realsmi

(i = 1, 2). Assume in addition that mappingsQ : X → Y andf : X → Y satisfy the Euler-
Lagrange type functional equation (1.1) and inequality (1.2), respectively, and conditions

(2.1) Q (x) = Q (x) ,

and

(2.2)
∥∥∥f (x)− f (x)

∥∥∥ ≤ 1

m0m1


1
m

ε1, if m > 1

mε2, if 0 < m < 1,

with constantsε1, ε2 ≥ 0 (independent ofx1, x2 ∈ X), and a positive constantm0 = m1m2+1
m1+m2

.
Define

(2.3) fn (x) =

 m−2nf (mnx) , if m > 1

m2nf (m−nx) , if 0 < m < 1,

for all x ∈ X andn ∈= N0 = {0, 1, 2, ...}. Then the limit

(2.4) Q(x) = lim
n→∞

fn(x)

exists for allx ∈ X andQ : X → Y is the unique Euler-Lagrange type quadratic mapping,
such that

‖f (x)−Q (x)‖(2.5)

≤ {(m + m0m1) (m1m2 + 1) |m− 1|+ m0m2|m2 −m2
1|} c + m (m1m2 + 1) |m− 1|ε

m0m1 (m1m2 + 1) (m− 1)2 (m + 1)

= δ

holds for allx ∈ X, with non-negative constantsc and

ε =

 ε1, if m > 1

ε2, if 0 < m < 1
independent ofx ∈ X.(2.6)

Proof. Now claim forn ∈ N0 that inequality

(2.7) ‖f (x)− fn (x)‖ ≤

 δ1 (1−m−2n) , if m > 1

δ2 (1−m2n) , if 0 < m < 1,
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6 MATINA JOHN RASSIAS AND JOHN M ICHAEL RASSIAS

holds for allx ∈ X, whereδ1 = δ for m > 1 andδ2 = δ for 0 < m < 1:

δ1 =
{(m + m0m1) (m1m2 + 1) (m− 1) + m0m2|m2 −m2

1|} c + m (m1m2 + 1) (m− 1) ε1

m0m1 (m1m2 + 1) (m− 1)2 (m + 1)

(2.8)

δ2 =
{(m + m0m1) (m1m2 + 1) (1−m) + m0m2|m2

1 −m2|} c + m (m1m2 + 1) (1−m) ε2

m0m1 (m1m2 + 1) (1−m)2 (m + 1)

are two non-negative constants independent ofx ∈ X. Forn = 0, it is trivial.
Assumem > 1. From (1.2), withxi = ai

m0
x, (i = 1, 2), we obtain∥∥∥∥f(mx) + m1m2f(0)−mm0

[
m1f(

a1

m0

x) + m2f(
a2

m0

x)

]∥∥∥∥ ≤ c,

or

(2.9)
∥∥∥f (x)−m−2f(mx)− m1m2

m2
f(0)

∥∥∥ ≤ c

m2
,

wheref (x) = m0

m

[
m1f( a1

m0
x) + m2f( a2

m0
x)

]
. Besides, from (1.2), withx1 = x, x2 = 0, we

get‖f(m1a1x) + m1m2f(a2x)−mm0 [m1f(x) + m2f(0)]‖ ≤ c, or

(2.10)

∥∥∥∥f (x)− f (x) +
m2

m1

f(0)

∥∥∥∥ ≤ c

m0m1m
,

wheref (x) = 1
m0m1m

[f (m1a1x) + m1m2f (a2x)]. Therefore from (1.4), (2.2), (2.9), (2.10)
and triangle inequality we have∥∥∥∥f (x)−m−2f (mx) +

m2 (m2 −m2
1)

m1m2
f (0)

∥∥∥∥
≤

∥∥∥∥f (x)− f (x) +
m2

m1

f (0)

∥∥∥∥ +
∥∥∥f (x)− f (x)

∥∥∥ +
∥∥∥f (x)−m−2f (mx)− m1m2

m2
f (0)

∥∥∥
≤ c

m0m1m
+

ε1

m0m1m
+

c

m2
=

(m + m0m1) c + mε1

m0m1m2
,

or

(2.11)
∥∥f (x)−m−2f (mx)

∥∥ ≤ δ1

(
1−m−2

)
.

Assume0 < m < 1. Similarly, from (1.2), withxi = ai

m0

x
m

= bi

m0
x, bi = ai

m
(i = 1, 2), we

obtain
∥∥∥f(x) + m1m2f(0)−mm0

[
m1f( b1

m0
x) + m2f( b2

m0
x)

]∥∥∥ ≤ c, or

(2.12)
∥∥f (x)− f (x) + m1m2f(0)

∥∥ ≤ c,

wheref (x) = m0m
[
m1f( b1

m0
x) + m2f( b2

m0
x)

]
. Besides, from (1.2), withx1 = x

m
, x2 = 0,

we get
∥∥f(m1b1x) + m1m2f(b2x)−mm0

[
m1f( x

m
) + m2f(0)

]∥∥ ≤ c, or

(2.13)

∥∥∥∥f (x)−m2f
(
m−1x

)
− m2

m1

m2f(0)

∥∥∥∥ ≤ m

m0m1

c,
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wheref (x) = m
m0m1

[f (m1b1x) + m1m2f (b2x)] . Therefore from (1.4), (2.2), (2.12), (2.13)
and triangle inequality we have∥∥∥∥f (x)−m2f

(
m−1x

)
+

m2 (m2
1 −m2)

m1

f (0)

∥∥∥∥
≤

∥∥f (x)− f (x) + m1m2f (0)
∥∥ +

∥∥∥f (x)− f (x)
∥∥∥ +

∥∥∥∥f (x)−m2f
(
m−1x

)
− m2

m1

m2f (0)

∥∥∥∥
≤ (m + m0m1) c + mε2

m0m1

,

or

(2.14)
∥∥f (x)−m2f

(
m−1x

)∥∥ ≤ δ2

(
1−m2

)
.

Assumem > 1. From (2.11), withmix (i = 1, 2, . . . , n), on place ofx, and the triangle
inequality, we have,without induction

‖f (x)− fn (x)‖ =
∥∥f (x)−m−2nf (mnx)

∥∥
≤

∥∥f (x)−m−2f (mx)
∥∥ + m−2

∥∥f (mx)−m−2f
(
m2x

)∥∥
+ ... + m−2(n−1)

∥∥f
(
mn−1x

)
−m−2f (mnx)

∥∥
≤ δ1

(
1 + m−2 + ... + m−2(n−1)

) (
1−m−2

)
= δ1

(
1−m−2n

)
.

Similarly if we assume0 < m < 1, we have from (2.14) that

‖f (x)− fn (x)‖ =
∥∥f (x)−m2nf

(
m−nx

)∥∥
≤ δ2

(
1 + m2 + ... + m2(n−1)

) (
1−m2

)
= δ2

(
1−m2n

)
.

Therefore we prove inequality (2.7).
Claim now that the sequence{fn(x)} converges.To do this it suffices to prove that it is a

Cauchy sequence. Inequality (2.7) is involved.
In fact, if m > 1 andi > j > 0, andh1 = mjx, we have

‖fi(x)− fj(x)‖
= m−2j

∥∥m−2(i−j)f
(
mi−jh1

)
− f(h1)

∥∥
≤ δ1m

−2j
(
1−m−2(i−j)

)
= δ1

(
m−2j −m−2i

)
< δ1m

−2j −→
j→∞

0.

Similarly, if 0 < m < 1, andh2 = m−jx, we have :

‖fi(x)− fj(x)‖ = m2j
∥∥m2(i−j)f(m−(i−j)h2)− f(h2)

∥∥ < δ2m
2j −→

j→∞
0.

Thus we candefinea mappingQ : X → Y , by (2.4).
Claim that from (1.2) and (2.4) we can get (1.1), or equivalently that the afore-mentioned

well-defined mappingQ : X → Y is Euler-Lagrange type quadratic. In fact, it is clear from
the functional inequality (1.2) and the limit (2.4) withm > 1 that

m−2n‖f (m1a1m
nx1 + m2a2m

nx2) + m1m2f (a2m
nx1 − a1m

nx2)

−
(
m1a

2
1 + m2a

2
2

)
[m1f (mnx1) + m2f (mnx2)] ‖ ≤ m−2nc,
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8 MATINA JOHN RASSIAS AND JOHN M ICHAEL RASSIAS

or

‖fn(m1a1x1 + m2a2x2) + m1m2fn(a2x1 − a1x2)

−
(
m1a

2
1 + m2a

2
2

)
[m1fn(x1) + m2fn(x2)] ‖

≤ m−2nc −→
n→∞

0,

or

‖Q(m1a1x1 + m2a2x2) + m1m2Q(a2x1 − a1x2)− (m1a
2
1 + m2a

2
2) [m1Q(x1) + m2Q(x2)]‖

= 0

or the mappingQ satisfies (1.1) ifm > 1. Similarly, from (1.2) and (2.4) we get thatQ satisfies
(1.1) if 0 < m < 1. ThereforeQ satisfies (1.1) if0 < m 6= 1, completing the proof thatQ is
Euler-Lagrange type quadratic mappingin X.

It is now clear from inequality (2.7) withn → ∞, as well as formula (2.4) that the required
inequality (2.5) holds inX. This completesthe existence proofof the above-mentioned Theo-
rem 2.1.

We claim thatQ is unique. Let Q′ : X → Y be another Euler-Lagrange type quadratic
mapping satisfying(2.5). ThenQ′ = Q.

In fact, assumem > 1. Remember bothQ andQ′ satisfy (1.15). Then for everyx ∈ X and
n ∈ N0,

‖Q(x)−Q′ (x)‖
≤ m−2n {‖Q(mnx)− f(mnx)‖+ ‖Q′ (mnx)− f (mnx)‖}
≤ 2δm−2n −→

n→∞
0,

or Q(x) = Q′(x). Similarly we establish uniqueness results if0 < m < 1. This completes
the proof ofthe uniquenessandthe Ulam stabilityfor Euler-Lagrange type quadratic functional
equations of the form (1.1).

Corollary 2.2. Let X andY be real normed linear spaces. Assume thatY is complete. Take
m1 = m2 = 1 : 0 < m = a2

1 + a2
2 6= 1 andm0 = 1 for any fixed non-zero realsai (i = 1, 2).

Define functionsfn = fn(x) as in (2.3). Then the limit in (2.4) exists for allx ∈ X and
Q : X → Y is the unique Euler-Lagrange type quadratic mapping such that

(2.15) ‖f (x)−Q (x)‖ ≤ 3

2

1

|m− 1|
c (= δ)

for all x ∈ X with constantc ≥ 0 (independent ofx ∈ X).

Note that in this case there isno constantε in the right-hand side of (2.15) becausef (x) =
f (x). Besidesδ given by (2.15) is sharper than the corresponding one in [21, 22] which is of
the form

δ =
1

2

c

(m− 1)2 (m + 1)

 3m2 − 1, if m > 1

3−m2, if 0 < m < 1

≥ 1

2

c

(m− 1)2 (m + 1)

 3m2 − 3, if m > 1

3− 3m2, if 0 < m < 1

=
3

2

1

|m− 1|
c.
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If a1 = a2 = 1, thenm = 2 and from (2.15) we haveδ = 3c
2

. We note that in this case
a sharper constantδ = c

2
may be found, if new substitutionx1 = x2 = x is applied in (1.2),

becausef (x) = f (x) = f (x) [21, 22].
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