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Abstract

In 1941 Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 Bo
was the second author to treat this problem for additive mappings. In 1982–1998 Rassias est
the Hyers–Ulam stability of linear and nonlinear mappings. In 1983 Skof was the first aut
solve the same problem on a restricted domain. In 1998 Jung investigated the Hyers–Ulam
of more general mappings on restricted domains. In this paper we introduce additive mappings
forms: of “Jensen” and “Jensen type,” and achieve the Ulam stability of these mappings on re
domains. Finally, we apply our results to the asymptotic behavior of the functional equations o
types.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1940 and in 1968 Ulam [24] proposed thegeneral Ulam stability problem:

“When is it true that by slightly changing the hypotheses of a theorem one ca
assert that the thesis of the theorem remains true or approximately true?”
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In 1941 Hyers [13] solved the aforementioned problem for linear mappings. In
Bourgin [3] was the second author to treat this problem for additive mappings. In
according to Gruber [12], this kind of stability problems is of particular interest in p
ability theory and in functional equations. In 1978 Rassias [22] employed Hyers’
to new linear mappings. In 1980 and in 1987, Fenyö [7,8] established the stability
Ulam problem for quadratic and other mappings. In 1987 Gajda and Ger [10] showe
one can get analogous stability results for subadditive multifunctions. Other inter
stability results have been achieved also by the following authors: Aczél [1], Borell
Forti [2,9], Cholewa [4], Czerwik [5], Drljevic [6], and Kannappan [15]. In 1982–19
Rassias [16–21] established the Hyers–Ulam stability of linear and nonlinear map
In 1999 Gavruta [11] answered a question of Rassias [18] concerning the stability
Cauchy equation. In 1983 Skof [23] was the first author to solve the Ulam problem
restricted domain. In 1998 Jung [14] investigated the Hyers–Ulam stability for more
eral mappings on restricted domains. In this paper we introduce additive mappings
new forms: of “Jensen” and “Jensen type,” and achieve the Ulam stability of these
pings on restricted domains. Finally, we apply our results to the asymptotic behavior
functional equations of these types.

Throughout this paper, letX be a real normed space andY be a real Banach space
the case of functional inequalities, as well letX andY be real linear spaces for function
equations.

Definition 1. A mappingA :X → Y is calledadditive of the first formif A satisfies the
additive functional equation

A(x1 + x2) + A(x1 − x2) = 2A(x1) (1)

for all x1, x2 ∈ X. We note that (1) is equivalent tothe Jensen equation

A

(
x + y

2

)
= 1

2

[
A(x) + A(y)

]
(1′)

for x = x1 + x2, y = x1 − x2.

Definition 2. A mappingA :X → Y is calledadditive of the second formif A satisfies the
additive functional equation

A(x1 + x2) − A(x1 − x2) = 2A(x2) (2)

for all x1, x2 ∈ X. We note that (2) is equivalent tothe Jensen type equation

A

(
x − y

2

)
= 1

2

[
A(x) − A(y)

]
(2′)

for x = x1 + x2, y = x1 − x2.

Definition 3. A mappingf :X → Y is calledapproximately oddif f satisfies the func
tional inequality∥∥f (x) + f (−x)

∥∥ � θ (3)

for some fixedθ � 0 and for allx ∈ X.
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In this section we state the following Theorem 1 which was proved by Rassias [1
1994.

Theorem 1. If a mappingf :X → Y satisfies the inequalities∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)
∥∥ � δ, (4)∥∥f (0)

∥∥ � δ0 (5)

for some fixedδ, δ0 � 0 and for allx1, x2 ∈ X, then there exists a unique additive mapp
A :X → Y of the first form which satisfies the inequality∥∥f (x) − A(x)

∥∥ � δ + δ0 (6)

for all x ∈ X. If, moreover,f is measurable orf (tx) is continuous int for each fixed
x ∈ X thenA(tx) = tA(x) for all x ∈ X and t ∈ R.

The last assertion holds according to Rassias’ work [16] in 1982.

2. Stability of Eq. (1) on a restricted domain

Theorem 2. Let d > 0 and δ, δ0 � 0 be fixed. If a mappingf :X → Y satisfies inequal
ity (4) for all x1, x2 ∈ X, with ‖x1‖+‖x2‖ � d , and(5), then there exists a unique additi
mappingA :X → Y of the first form such that

∥∥f (x) − A(x)
∥∥ � 5

2
δ + δ0 (7)

for all x ∈ X. If, moreover,f is measurable orf (tx) is continuous int for each fixed
x ∈ X, thenA(tx) = tA(x) for all x ∈ X andt ∈ R.

Proof. Assume‖x1‖ + ‖x2‖ < d . If x1 = x2 = 0, then we chooset ∈ X with ‖t‖ = d .
Otherwise, let us choose

t =
(

1+ d

‖x1‖
)

x1 if ‖x1‖ � ‖x2‖, t =
(

1+ d

‖x2‖
)

x2 if ‖x1‖ � ‖x2‖.

We note that‖t‖ = ‖x1‖ + d > d if ‖x1‖ � ‖x2‖, ‖t‖ = ‖x2‖ + d > d if ‖x1‖ � ‖x2‖.
Clearly, we see that

‖x1 − t‖ + ‖x2 + t‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d, ‖x1 − x2‖ + ‖2t‖ � d,

‖x1 + t‖ + ‖−x2 + t‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d, ‖x1‖ + ‖t‖ � d. (8)

Inequalities (8) come from the corresponding substitutions attached between the righ
sided parentheses of the following functional identity.

Therefore from (4), (8), the triangle inequality, and thefunctional identity

2
[
f (x1 + x2) + f (x1 − x2) − 2f (x1)

]
= [

f (x1 + x2) + f (x1 − x2 − 2t) − 2f (x1 − t)
]
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(with x1 − t onx1 andx2 + t onx2)

− [
f (x1 − x2 − 2t) + f (x1 − x2 + 2t) − 2f (x1 − x2)

]
(with x1 − x2 onx1 and 2t onx2)

+ [
f (x1 − x2 + 2t) + f (x1 + x2) − 2f (x1 + t)

]
(with x1 + t onx1 and−x2 + t onx2)

+ 2
[
f (x1 + t) + f (x1 − t) − 2f (x1)

]
(with x1 onx1 andt onx2),

we get

2
∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)

∥∥ � δ + δ + δ + 2δ = 5δ

or

∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)
∥∥ � 5

2
δ. (9)

Applying now Theorem 1 and inequality (9), one gets that there exists a unique ad
mappingA :X → Y of the first form that satisfies the additive equation (1) and ineq
ity (7), such thatA(x) = limn→∞ 2−nf (2nx) . Our last assertion is trivial according
Theorem 1.

We note that if we defineS2 = {(x1, x2) ∈ X2: ‖xi‖ < d, i = 1,2} for somed > 0, then
{(x1, x2) ∈ X2: ‖x1‖ + ‖x2‖ � 2d} ⊂ X2\S2. ✷
Corollary 1. If we assume that a mappingf :X → Y satisfies inequalities(4)–(5)for some
fixedδ, δ0 � 0 and for all (x1, x2) ∈ X2\S2, then there exists a unique additive mapp
A :X → Y of the first form, satisfying(7) for all x ∈ X. If, moreover,f is measurable
or f (tx) is continuous int for each fixedx ∈ X, thenA(tx) = tA(x) for all x ∈ X and
all t ∈ R.

Corollary 2. A mappingf :X → Y is additive of the first form if and only if the asympto
condition∥∥f (x1 + x2) + f (x1 − x2) − 2f (x1)

∥∥ → 0 as‖x1‖ + ‖x2‖ → ∞ (10)

holds.

Proof. Following the corresponding techniques of the proof of Jung [14], one gets
Theorem 2 and asymptotic condition (10) thatf is additive of the first form. The revers
assertion is obvious.✷

However, in 1983 Skof [23] proved an asymptotic property forthe additive mapping
A :X → Y , such that

A(x1 + x2) = A(x1) + A(x2) (11)

holds for allx1, x2 ∈ X.
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3. Stability of Eq. (2)

Theorem 3. If a mappingf :X → Y satisfies the inequality∥∥f (x1 + x2) − f (x1 − x2) − 2f (x2)
∥∥ � δ (12)

for someδ � 0 and for all x1, x2 ∈ X, then there exists a unique additive mappingA :
X → Y of the second form which satisfies the inequality

∥∥f (x) − A(x)
∥∥ � 3

2
δ (13)

for all x ∈ X. If, moreover,f is measurable orf (tx) is continuous int for each fixed
x ∈ X, thenA(tx) = tA(x) for all x ∈ X andt ∈ R.

Proof. Replacingx1 = x2 = 0 in (12), we find

∥∥f (0)
∥∥ � δ

2
. (14)

Thus, substitutingx1 = x2 = x in (12), one gets

∥∥f (2x) − f (0) − 2f (x)
∥∥ � δ or

∥∥f (2x) − 2f (x)
∥∥ � δ + ∥∥f (0)

∥∥ � 3

2
δ, or

∥∥f (x) − 2−1f (2x)
∥∥ � 3

2
δ(1− 2−1) (15)

for all x ∈ X. Therefore from (15), with 2ix on place ofx (i = 1,2, . . . , n − 1), we obtain
∥∥f (x) − 2−nf (2nx)

∥∥ �
∥∥f (x) − 2−1f (2x)

∥∥ + ∥∥2−1f (2x) − 2−2f (22x)
∥∥ + · · ·

+ ∥∥2−(n−1)f (2n−1x) − 2−nf (2nx)
∥∥

� 3

2
δ(1+ 2−1 + · · · + 2−(n−1))(1− 2−1)

or
∥∥f (x) − 2−nf (2nx)

∥∥ � 3

2
δ(1− 2−n) (16)

for anyn ∈ N and allx ∈ X.
We claim that

A(x) = 2−nA(2nx) (17)

holds for anyn ∈ N and allx ∈ X. In fact, replacingx1 = x2 = 0 in (2) one findsA(0) = 0.
Thus substitutingx1 = x2 = x in (2) we getA(2x) = 2A(x) for all x ∈ X. Therefore by
induction onn one gets that

A(2n+1x) = A(2 · 2nx) = 2A(2nx) = 2 · 2nA(x) = 2n+1A(x)

for all x ∈ X, completing the proof of (17).
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By (16), forn � m > 0 andh = 2mx, we have
∥∥2−nf (2nx) − 2−mf (2mx)

∥∥ = 2−m
∥∥2−(n−m)f (2n−mh) − f (h)

∥∥
� 2−m 3

2
δ(1− 2−(n−m)) = 3

2
δ(2−m − 2−n) <

3

2
δ2−m → 0 asm → ∞. (18)

From (18) and the completeness ofY , we get that the Cauchy sequence{2−nf (2nx)}
converges. Therefore we may apply a direct method to the definition ofA, such that the
formula

A(x) = lim
n→∞ 2−nf (2nx) (19)

holds for allx ∈ X [16–19]. From formula (19) and inequality (12), it follows that
∥∥A(x1 + x2) − A(x1 − x2) − 2A(x2)

∥∥
= lim

n→∞ 2−n
∥∥f (2nx1 + 2nx2) − f (2nx1 − 2nx2) − 2f (2nx2)

∥∥ � lim
n→∞ 2−nδ = 0,

or Eq. (2) holds for allx1, x2 ∈ X. ThusA :X → Y is an additive mapping of the secon
form. According to inequality (16) and formula (19), one gets that inequality (13) hol

Assume now that there is another additive mappingA′ :X → Y of the second form
which satisfies Eq. (2), formula (17), and inequality (13). Therefore

∥∥A(x) − A′(x)
∥∥ = 2−n

∥∥A(2nx) − A′(2nx)
∥∥

� 2−n
[∥∥A(2nx) − f (2nx)

∥∥ + ∥∥f (2nx) − A′(2nx)
∥∥]

� 2−n

(
3

2
δ + 3

2
δ

)
= 3δ2−n → 0 asn → ∞

or

A(x) = A′(x) (20)

for all x ∈ X, completing the proof of the first part of our Theorem 3.
The proof of the last assertion in our Theorem 3 is obvious according to Ra

work [16]. ✷

4. Stability of Eq. (2) on a restricted domain

We note that from (3) and‖f (−2x) + f (2x)‖ � θ (from (3) with 2x onx) and (15) as
well as‖f (−2x)−2f (−x)‖ � (3/2)δ (from (15) with 2x onx), and the triangle inequalit
one gets

2
∥∥f (−x) + f (x)

∥∥ �
∥∥−[

f (−2x) − 2f (−x)
]∥∥

+ ∥∥−[
f (2x) − 2f (x)

]∥∥ + ∥∥f (−2x) + f (2x)
∥∥

� 3
δ + 3

δ + θ = 3δ + θ

2 2



522 J.M. Rassias, M.J. Rassias / J. Math. Anal. Appl. 281 (2003) 516–524
or
∥∥f (−x) + f (x)

∥∥ � 3

2
δ + θ

2
(3)= θ.

Thereforeθ = 3δ and (3) takes the independent ofθ equivalent form∥∥f (−x) + f (x)
∥∥ � 3δ. (3′)

Theorem 4. Let d > 0 and δ � 0 be fixed. If an approximately odd mappingf :X → Y

satisfies inequality(12) for all x1, x2 ∈ X with ‖x1‖ + ‖x2‖ � d and inequality(3′) for all
x ∈ X with ‖x‖ � d , then there exists a unique additive mappingA :X → Y of the second
form such that

∥∥f (x) − A(x)
∥∥ � 33

2
δ (21)

for all x ∈ X. If, moreover,f is measurable orf (tx) is continuous int for each fixed
x ∈ X, thenA(tx) = tA(x) for all x ∈ X andt ∈ R.

Proof. Assume‖x1‖ + ‖x2‖ < d . If x1 = x2 = 0, then we chooset ∈ X with ‖t‖ = d .
Otherwise, let us choose

t =
(

1+ d

‖x1‖
)

x1 if ‖x1‖ � ‖x2‖, t =
(

1+ d

‖x2‖
)

x2 if ‖x1‖ � ‖x2‖.

We note that‖t‖ = ‖x1‖ + d > d if ‖x1‖ � ‖x2‖, ‖t‖ = ‖x2‖ + d > d if ‖x1‖ � ‖x2‖.
Clearly, we see that

‖x1 − t‖ + ‖x2 + t‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d,

‖x1 − t‖ + ‖x2 − t‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d,

‖x1 − 2t‖ + ‖x2‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d, ‖t‖ + ‖x2‖ � d, (22)

and‖t − x2‖ � ‖t‖ − ‖x2‖ = (‖x2‖ + d) − ‖x2‖ = d , because‖t‖ = ‖x2‖ + d .
Therefore from (3′), (12), (22), and the functional identity

f (x1 + x2) − f (x1 − x2) − 2f (x2)

= [
f (x1 + x2) − f (x1 − x2 − 2t) − 2f (x2 + t)

]
(with x1 − t onx1 andx2 + t onx2)

+ [
f (x1 + x2 − 2t) − f (x1 − x2) − 2f (x2 − t)

]
(with x1 − t onx1 andx2 − t onx2)

− [
f (x1 + x2 − 2t) − f (x1 − x2 − 2t) − 2f (x2)

]
(with x1 − 2t onx1 andx2 onx2)

+ 2
[
f (t + x2) − f (t − x2) − 2f (x2)

]
(with t onx1 andx2 onx2)

+ 2
[
f (t − x2) + f

(−(t − x2)
)]

(with t − x2 onx),
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we get∥∥f (x1 + x2) − f (x1 − x2) − 2f (x2)
∥∥ � δ + δ + δ + 2δ + 6δ = 5δ + 6δ = 11δ.

(23)

Applying Theorem 3 and inequality (23), we prove that there exists a unique ad
mappingA :X → Y of the second form that satisfies Eq. (2) and inequality (21), com
ing the proof of Theorem 4. ✷

We note that if we defineS1 = {x ∈ X: ‖x‖ < d} andS2 = {(x1, x2) ∈ X2: ‖xi‖ < d,

i = 1,2} for some fixedd > 0, then{x ∈ X: ‖x‖ � 2d} ⊂ X\S1 and{(x1, x2) ∈ X2: ‖x1‖+
‖x2‖ � 2d} ⊂ X2\S2.

Corollary 3. If we assume that a mappingf :X → Y satisfies inequality(12) for some
fixedδ � 0 and(3′) for all x ∈ X\S1 and for all(x1, x2) ∈ X2\S2, then there exists a uniqu
additive mappingA :X → Y of the second form, satisfying(21) for all x ∈ X. If, moreover,
f is measurable orf (tx) is continuous int for each fixedx ∈ X, thenA(tx) = tA(x) for
all x ∈ X andt ∈ R.

Corollary 4. A mappingf :X → Y is additive of the second form if and only if the asym
totic conditions∥∥f (−x) + f (x)

∥∥ → 0 and
∥∥f (x1 + x2) − f (x1 − x2) − 2f (x2)

∥∥ → 0, (24)

as‖x‖ → ∞ and‖x1‖ + ‖x2‖ → ∞ hold, respectively.

Proof. Following the corresponding techniques of the proof of Jung [14], one gets
Theorem 4 and asymptotic conditions (24) thatf is additive of the second form. Th
reverse assertion is clear.✷
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