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Abstract. In 1968 S. M. Ulam proposed the general problem: When
is it true that by changing a little the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately
true. In 1978 P. M. Gruber stated that this kind of stability problems are
of particular interest in probability theory and in the case of functional
equations of different types. In 1982-1998 we solved above Ulam problem
for linear mappings and also established analogous stability problems for
quadratic mappings. In this paper we introduce the new cubic mappings
C : X → Y , satisfying the cubic functional equation

C(x1 + 2x2) + 3C(x1) = 3C(x1 + x2) + C(x1 − x2) + 6C(x2)

for all 2-dimensional vectors (x1, x2) ∈ X2, with X a linear space (Y : = a
real complete linear space), and then solve the Ulam stability problem for
the above-said mappings C.

1. Cubic functional equation

Definition 1.1. Let X be a linear space and let Y be a real complete
linear space. Then a mapping C : X → Y , is called cubic, if the cubic
functional equation

(1.1) C(x1 + 2x2) + 3C(x1) = 3C(x1 + x2) + C(x1 − x2) + 6C(x2)

holds for all 2-dimensional vectors (x1, x2) ∈ X2.( [14-23] ).

Note that mapping C is called cubic because the following algebraic iden-
tity

(x1 + 2x2)3 + 3x3
1 = 3(x1 + x2)3 + (x1 − x2)3 + 6x3

2
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holds for all (x1, x2) ∈ R2 and because the functional equation

(1.2) C(2nx) = (2n)3C(x)

holds for all x ∈ X and all n ∈ N . In fact, substitution of x1 = x2 = 0 in
equation (1.1) yields that

(1.3) C(0) = 0

Lemma 1.2. Let C : X → Y be a cubic mapping satisfying equation (1.1).
Then C is an odd mapping ; that is, equation

(1.4) C(−x) = −C(x)

holds for all x ∈ X.

Proof. Substituting x1 = x , x2 = −x in equation (1.1) and employing
(1.3) one gets that equation

C(−x) + 3C(x) = 3C(0) + C(2x) + 6C(−x),

or

(1.5) C(2x) = 3C(x)− 5C(−x)

holds for all x ∈ X . Similarly substituting x1 = 0 , x2 = x in equation (1.1)
and employing (1.3) one gets that equation

C(2x) + 3C(0) = 3C(x) + C(−x) + 6C(x),

or

(1.6) C(2x) = 9C(x) + C(−x)

holds for all x ∈ X . Functional equations (1.5) and (1.6) yield the required
equation (1.4), completing the proof of Lemma 1.2.

Lemma 1.3. Let C : X → Y be a cubic mapping satisfying equation (1.1).
Then C satisfies the general functional equation

(1.7) C(x) = 2−3nC(2nx)

for all x ∈ X and all n ∈ N .

Proof. Employing equations (1.4) and (1.5) one gets that the basic equa-
tion

C(2x) = 8C(x),

or

(1.8) C(x) = 2−3C(2x)

holds for all x ∈ X .
Then induction on n ∈ N with x replaced by 2n−1x in the basic equation

(1.8) yields equation (1.7). In fact, the basic equation (1.8) with x replaced
by 2n−1x yields that the functional equation

(1.9) C(2n−1x) = 2−3C(2nx)
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holds for all x ∈ X .
Moreover replacing n by n− 1 in the general equation (1.7) one gets that

(1.10) C(x) = 2−3(n−1)C(2n−1x)

holds for all x ∈ X .
Thus functional equations (1.9) and (1.10) imply

C(x) = 2−3(n−1)2−3C(2nx),

or
C(x) = 2−3nC(2nx),

for all x ∈ X and all n ∈ N completing the proof of the required general
functional equation (1.7) and hence the proof of Lemma 1.3.

2. Cubic functional inequality

Definition 2.1. Let X be a normed linear space and let Y be a real
complete normed linear space. Then a mapping f : X → Y , is called approx-
imately cubic, if the cubic functional inequality

(2.11) ‖f(x1 + 2x2) + 3f(x1)− [3f(x1 + x2) + f(x1 − x2) + 6f(x2)] ‖ ≤ c
holds for all 2-dimensional vectors (x1, x2) ∈ X2 with a constant c ≥ 0 (inde-
pendent of x1, x2).

Definition 2.2. Let X be a normed linear space and let Y be a real
complete normed linear space. Assume in addition that there exists a constant
c ≥ 0 (independent of x ∈ X). Then a cubic mapping C : X → Y , is said to
be near an approximately cubic mapping f : X → Y , if the following inequality

(2.12) ‖f(x)− C(x)‖ ≤ 11

42
c,

holds for all x ∈ X.

Theorem 2.3. Let X be a normed linear space and let Y be a real com-
plete normed linear space. Assume in addition the above-mentioned mappings
C, f and the three definitions. Then the limit

(2.13) C(x) = lim
n→∞

2−3nf(2nx)

exists for all x ∈ X and all n ∈ N and C : X → Y is the unique cubic
mapping near the approximately cubic mapping f : X → Y .

Proof of Existence in Theorem. Substitution of x1 = x2 = 0 in
inequality (2.11) yields that

‖4f(0)− [10f(0)]‖ ≤ c,
or

(2.14) ‖f(0)‖ ≤ c

6

(
=

c

3!

)
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Lemma 2.4. Let f : X → Y be an approximately cubic mapping satisfying
inequality (2.11). Then f is an approximately odd mapping ; that is, inequality

(2.15) ‖f(−x) + f(x)‖ ≤ c

3

(
=

2c

3!

)

holds for all x ∈ X with constant c ≥ 0 (independent of x ∈ X).

Proof. Substitution of x1 = x, x2 = −x in inequality (2.11) yields that
inequality

‖f(−x) + 3f(x)− [3f(0) + f(2x) + 6f(−x)]‖ ≤ c,
or

(2.16) ‖ − 5f(−x) + 3f(x)− 3f(0)− f(2x)‖ ≤ c
holds for all x ∈ X . Similarly substitution of x1 = 0, x2 = x in inequality
(2.11) yields that inequality

‖f(2x) + 3f(0)− [3f(x) + f(−x) + 6f(x)]‖ ≤ c
or

(2.17) ‖ − f(−x)− 9f(x) + 3f(0) + f(2x)‖ ≤ c
holds for all x ∈ X .

Functional inequalities (2.16), (2.17) and triangle inequality yield

6‖f(−x) + f(x)‖ = ‖ − 6[f(−x) + f(x)]‖

= ‖[−5f(−x) + 3f(x)− 3f(0)− f(2x)]
+[−f(−x)− 9f(x) + 3f(0) + f(2x)]‖

≤ ‖ − 5f(−x) + 3f(x)− 3f(0)− f(2x)‖
+‖ − f(−x)− 9f(x) + 3f(0) + f(2x)‖

≤ c+ c = 2c,

or

‖f(−x) + f(x)‖ ≤ c

3
,

completing the proof of Lemma 2.4.

Lemma 2.5. Let f : X → Y be an approximately cubic mapping satisfying
inequality (2.11). Then f satisfies the general functional inequality

(2.18) ‖f(x)− 2−3nf(2nx)‖ ≤ 11

42
(1− 2−3n)c

(
=

11/7

3!
(1− 2−3n)c

)
,

for all x ∈ X and all n ∈ N with constant c ≥ 0 (independent of x ∈ X).
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Proof. Employing inequalities (2.14), (2.15), (2.17) and triangle in-
equality one gets that the basic inequality

‖f(2x)− 8f(x)‖
= ‖[−f(−x)− 9f(x) + 3f(0) + f(2x)] + [f(−x) + f(x)] + [−3(f(0)]‖
≤ ‖ − f(−x)− 9f(x) + 3f(0) + f(2x)‖+ ‖f(−x) + f(x)‖+ 3‖f(0)‖

≤ c+
c

3
+ 3

c

6
=

11

6
c,

or

‖f(2x)− 8f(x)‖ ≤ 11

6
c,

or

‖f(x)− 2−3f(2x)‖ ≤ 11

48
c,

or

(2.19) ‖f(x)− 2−3f(2x)‖ ≤ 11

42
(1− 2−3)c,

holds for all x ∈ X with constant c ≥ 0 (independent of x).
Replacing now x with 2x in the basic inequality (2.19) one concludes that

‖f(2x)− 2−3f(22x)‖ ≤ 11

42
(1− 2−3)c,

or

(2.20) ‖2−3f(2x)− 2−6f(22x)‖ ≤ 11

42
(2−3 − 2−6)c

holds for all x ∈ X .
Functional inequalities (2.19), (2.20) and the triangle inequality yield

‖f(x)− 2−6f(22x)‖ ≤ ‖f(x)− 2−3f(2x)‖+ ‖2−3f(2x)− 2−6f(22x)‖
≤ 11

42

[
(1− 2−3) + (2−3 − 2−6)

]
c

or that the functional inequality

(2.21) ‖f(x)− 2−6f(22x)‖ ≤ 11

42
(1− 2−6)c,

holds for all x ∈ X .
Similarly by induction on n ∈ N with x replaced by 2n−1x in the basic

inequality (2.19) claim that the general functional inequality (2.18) holds for
all x ∈ X and all n ∈ N with constant c ≥ 0 (independent of x ∈ X).

In fact, the basic inequality (2.19) with x replaced by 2n−1x yields the
functional inequality

‖f(2n−1x)− 2−3f(2nx)‖ ≤ 11

42
(1− 2−3)c,
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or that the functional inequality

(2.22) ‖2−3(n−1)f(2n−1x)− 2−3nf(2nx)‖ ≤ 11

42
(2−3(n−1) − 2−3n)c,

holds for all x ∈ X .
Moreover, by induction hypothesis with n replaced by n−1 in the general

inequality (2.18) one gets that

(2.23) ‖f(x)− 2−3(n−1)f(2n−1x)‖ ≤ 11

42
(1− 2−3(n−1))c

holds for all x ∈ X .
Thus the functional inequalities (2.22), (2.23) and the triangle inequality

imply

‖f(x)− 2−3nf(2nx)‖ ≤ ‖f(x)− 2−3(n−1)f(2n−1x)‖
+‖2−3(n−1)f(2n−1x)− 2−3nf(2nx)‖,

or

‖f(x)− 2−3nf(2nx)‖ ≤ 11

42

[
(1− 2−3(n−1))

+(2−3(n−1) − 2−3n)
]
c =

11

42
(1− 2−3n)c,

completing the proof of the required general functional inequality (2.18) and
thus the proof of Lemma 2.5.

Lemma 2.6. Let f : X → Y be an approximately cubic mapping satisfying
inequality (2.11). Then the sequence

(2.24)
{

2−3nf(2nx)
}

converges.

Proof. Note that from the general functional inequality (2.18) and the
completeness of Y , one proves that the above-mentioned sequence (2.24) is a
Cauchy sequence. In fact, if i > j > 0, then

(2.25) ‖2−3if(2ix)− 2−3jf(2jx)‖ = 2−3j‖2−3(i−j)f(2ix)− f(2jx)‖
holds for all x ∈ X , and all i, j ∈ N .

Setting h = 2jx in (2.25) and employing the afore-mentioned general
functional inequality (2.18) one concludes that

‖2−3if(2ix)− 2−3jf(2jx)‖ = 2−3j‖2−3(i−j)f(2i−jh)− f(h)‖
≤ 2−3j 11

42 (1− 2−3(i−j))c,

or

‖2−3if(2ix)− 2−3jf(2jx)‖ ≤ 11

42
(2−3j − 2−3i)c <

11

42
2−3jc

or

(2.26) lim
j→∞

‖2−3if(2ix)− 2−3jf(2jx)‖ = 0.
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which yields that the sequence (2.24) is a Cauchy sequence, and thus the proof
of Lemma 2.6 is complete.

Lemma 2.7. Let f : X → Y be an approximately cubic mapping satisfying
inequality (2.11). Assume in addition a mapping C : X → Y given by the
above-said formula (2.13). Then C = C(x) is a well-defined mapping and
that C is a cubic mapping in X.

Proof. Employing Lemma 2.6 and formula (2.13), one gets that C is a
well-defined mapping. This means that the limit (2.13) exists for all x ∈ X .

In addition claim that C satisfies the functional equation (1.1) for all 2-
dimensional vectors (x1, x2) ∈ X2. In fact, it is clear from the cubic functional
inequality (2.11) and the limit (2.13) that the following functional inequality

(2.27)
2−3n‖f(2nx1 + 2 · 2nx2) + 3f(2nx1)− [3f(2nx1 + 2nx2)

+f(2nx1 − 2nx2) +6f(2nx2)] ‖ ≤ 2−3nc,

holds for all vectors (x1, x2) ∈ X2 and all n ∈ N .
Therefore from inequality (2.27) one gets

‖ lim
n→∞

2−3nf [2n(x1 + 2x2)] + 3 lim
n→∞

2−3nf(2nx1)

−
[
3 lim

n→∞
2−3nf [2n(x1 + x2)]

+ lim
n→∞

2−3nf [2n(x1 − x2)]

+6 lim
n→∞

2−3nf(2nx2)
]
‖ ≤

(
lim

n→∞
2−3n

)
c = 0

or mapping C satisfies the cubic equation (1.1) for all vectors (x1, x2) ∈ X2.
Thus C is a 2-dimensional cubic mapping, completing the proof of Lemma
2.7.

It is now clear from the afore-mentioned Lemmas 1.2-2.7 and especially
from the general inequality (2.18), n → ∞, and the formula (2.13) that in-
equality (2.12) holds in X , completing the existence proof in this Theorem.

Proof of Uniqueness in Theorem. Let C1 : X → Y be another 2-
dimensional cubic mapping satisfying the cubic functional equation (1.1), such
that inequality

(2.28) ‖f(x)− C1(x)‖ ≤ 11

42
c

(
=

11/7

3!
c

)

holds for all x ∈ X . If there exists a 2-dimensional cubic mapping C : X → Y
satisfying the cubic functional equation (1.1), then

(2.29) C(x) = C1(x),

holds for all x ∈ X .
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To prove the afore-mentioned uniqueness one employs equation (1.7) for
C and C1, as well, so that

(2.30) C1(x) = 2−3nC1(2nx),

holds for all x ∈ X , and all n ∈ N . Moreover, the triangle inequality and
inequalities (2.12) and (2.28) yield

‖C(2nx)− C1(2nx)‖ ≤ ‖C(2nx)− f(2nx)‖+ ‖f(2nx)− C1(2nx)‖
≤ 11

42
c+

11

42
c =

11

21
c,

or

(2.31) ‖C(2nx)− C1(2nx)‖ ≤ 11

21
c

for all x ∈ X , and all n ∈ N . Then from equations (1.7) and (2.30), and
inequality (2.31), one obtains that

‖C(x)− C1(x)‖ = ‖2−3nC(2nx) − 2−3nC1(2nx)‖ ≤ 11

21
2−3nc

or

(2.32) ‖C(x)− C1(x)‖ ≤ 11

21
2−3nc

holds for all x ∈ X and all n ∈ N . Therefore from the above inequality (2.32),
and n→∞, one establishes

lim
n→∞

‖C(x) − C1(x)‖ ≤ 11

21

(
lim

n→∞
2−3n

)
c = 0

or
‖C(x)− C1(x)‖ = 0,

or
C(x) = C1(x),

for all x ∈ X , completing the proof of uniqueness and thus the stability of
this Theorem ( [1-13] ) and ( [24-28] ).

Example 2.8. Take f : R→ R be a real function such that f(x) = x3+k,
k = constant : |k| ≤ c

6

(
= c

3!

)
, in order that f satisfies inequality (2.11).

Moreover, there exists a unique cubic real mapping C : R→ R such that
from the limit (2.13) one gets

C(x) = lim
n→∞

2−3nf(2nx) = lim
n→∞

2−3n
[
(2nx)3 + k

]
= x3.

Note that inequality (2.12) holds. In fact, the above condition on k :|k| ≤ c
6 ,

implies

‖f(x)− C(x)‖ = ‖(x3 + k)− x3‖ = |k| < 11

42
c,

satisfying inequality (2.12), because from inequality (2.11) one gets that

|k + 3k − [3k + k + 6k]| = 6|k| ≤ c,
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or

|k| ≤ c

6
=

7

42
c <

11

42
c.
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[8] A. Járai, and L. Székelyhidi, Regularization and general methods in the theory of
functional equations, Aequ. Math. 52 (1996), 10-29.

[9] A.M. Kagan, Yu.V. Linnik, and C.R.C. Rao, ”Characterization problems in math-
ematical statistics”, John Wiley and Sons, New York, 1973.

[10] C.G. Khatri, and C.R. Rao, Functional equations and characterization of probability
laws through linear functions of random variables, J. Multiv. Anal. 2 (1972), 162-
173.

[11] M. Kuczma, ”An introduction to the theory of functional equations and inequali-
ties”, Panstwowe Wydawnictwo Naukowe, Uniwersytet Slaski, Warszawa, Kraków,
Katowice, 1985.

[12] S. Kurepa, A cosine functional equation in Hilbert space, Canad. J. Math. 12 (1957),
45-50.

[13] L. Paganoni, On a functional equation concerning affine transformations, J. Math.
Anal. Appl. 127 (1987), 475-491.

[14] J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Map-
pings, J. Funct. Anal. 46 (1982), 126-130.

[15] J.M. Rassias, On Approximation of Approximately Linear Mappings by Linear Map-
pings, Bull. Sc. Math. 108 (1984), 445-446.

[16] J.M. Rassias, Solution of a Problem of Ulam, J. Approx. Th. 57 (1989), 268-273.
[17] J.M. Rassias, Complete Solution of the Multi-dimensional Problem of Ulam, Dis-

cuss. Math. 14 (1994), 101-107.
[18] J.M. Rassias, Solution of a Stability Problem of Ulam, Discuss. Math. 12 (1992),

95-103.
[19] J.M. Rassias, On the Stability of the Euler-Lagrange Functional Equation, Chin. J.

Math. 20 (1992), 185-190.
[20] J.M. Rassias, On the Stability of the Non-linear Euler-Lagrange Functional Equa-

tion in Real Normed Linear Spaces, J. Math. Phys. Sci. 28 (1994), 231-235.
[21] J.M. Rassias, On the Stability of the Multi-dimensional Non-linear Euler-Lagrange

Functional Equation, ”Geometry, Analysis and Mechanics”, World Sci. Publ.,
(1994), 275-285.

[22] J.M. Rassias, On the Stability of the General Euler-Lagrange Functional Equation,
Demonstr. Math. 29 (1996), 755-766.



72 JOHN MICHAEL RASSIAS

[23] J.M. Rassias, Solution of the Ulam Stability Problem for Euler-Lagrange quadratic
mappings, J. Math. Anal. & Applications 220 (1998), 613-639.

[24] A.L. Rutkin, The solution of the functional equation of d’ Alembert’s type for
commutative groups, Internat. J. Math. Sci. 5 (1982), No 2.
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