A Maximum Principle in \mathbb{R}^{n+1}

John Michael S. Rassias

Daphne, Athens, Greece

Submitted by J. P. LaSalle

Abstract

In this paper we establish maximum principles of the Cauchy problem for hyperbolic equations in \mathbb{R}^{3} and $\mathbb{R}^{n+1}(n \geqslant 2)$. Our maximum principles generalize the results of Weinberger [5], and Sather [3,4] for a class of equations such that the coefficients can be allowed to depend upon t, as well, in $\left\{x_{1}, x_{2}, t\right\}$-space and $\left\{x_{1}, x_{2}, \ldots, x_{n}, t\right\}$-space. Throughout this paper, the influence of the work of Douglis [1] is apparent. See [2].

1. Maximum Principle in \mathbb{R}^{3}

Consider the hyperbolic equation

$$
\begin{equation*}
L u=k(t) \cdot\left(u_{x x_{1}}+u_{x_{2} x_{2}}\right)+u_{t t}=f(x, t) \in C^{0}(\bar{D}), \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right)$ and the domain D is defined as

$$
D=\left\{(x, t): T_{0} \leqslant t \leqslant T<0, x_{1}^{2}+x_{2}^{2}<\left(\int_{t}^{T}(-k(s))^{1 / 2} d s\right)^{2}\right\} .
$$

Let S_{0} be the portion of the boundary of D, which lies in the plane $t=T_{0}$, and S_{4} be the remainder of the boundary G of D, which is a characteristic conoid with respect to (1).

Then let us introduce a solution u of (1) in D which satisfies the initial conditions

$$
u\left(x, T_{0}\right)=\tilde{r}(x) \in C^{2}(\bar{D}), \quad u_{t}\left(x, T_{0}\right)=h(x) \in C^{0}(\bar{D}) .
$$

With the change of variable

$$
\begin{equation*}
v(x, t)=u(x, t)-\tilde{r}(x) \tag{2}
\end{equation*}
$$

Eq. (1) can be written as follows:

$$
\begin{equation*}
L v=k(t) \cdot\left(v_{x_{1} x_{1}}+x_{x_{2} x_{2}}\right)+v_{t t}=F(x, t) \in C^{0}(\bar{D}), \tag{3}
\end{equation*}
$$

where $F=f-k \cdot\left(\tilde{r}_{x_{1} x_{1}}+\tilde{r}_{x_{2} x_{2}}\right)$.

On the other hand, the initial data above change to

$$
\begin{equation*}
v\left(x, T_{0}\right)=0, \quad v_{t}\left(x, T_{0}\right)=h(x) \in C^{0}(\bar{D}) \tag{4}
\end{equation*}
$$

Assume the transformation to spherical polar coordinates

$$
\begin{equation*}
x_{1}=r \cdot \cos p, \quad x_{2}=r \cdot \sin p \tag{5}
\end{equation*}
$$

where

$$
p \in[0,2 \pi], r=\int_{t}^{T}(-k(s))^{1 / 2} d s
$$

By applying (5) we get

$$
\begin{gather*}
v_{x_{1} x_{1}}+v_{x_{2} x_{2}}=v_{r r}+(1 / r) \cdot v_{r}+\left(1 / r^{2}\right) \cdot v_{p p} \tag{6}\\
L v=k(t) \cdot\left(v_{r r}+\left(1 / r^{2}\right) \cdot v_{p p}\right)+(1 / r) \cdot k(t) \cdot v_{r}+v_{t t}=F_{0}(r, p, t) \tag{7}
\end{gather*}
$$

where $F_{0} \in C^{0}(\bar{D})$.
Let S_{4}^{e} be the part of S_{4}, where $r_{0}>e$, such that

$$
\begin{equation*}
r_{0}=\int_{T_{0}}^{T}(-k(s))^{1 / 2} d s, \quad e=\int_{T^{0}}^{T}(-k(s))^{1 / 2} d s \tag{8}
\end{equation*}
$$

where $T_{0} \leqslant t \leqslant T^{0} \leqslant T<0$.
The direct characteristic conoid S_{4} as well as the truncated one S_{4}^{e} are generated by the bicharacteristics of space-time (5). The angle parameter p is obviously constant along each fixed generator of S_{4}.

On the other hand, the total derivative of S_{4} is given by

$$
\begin{equation*}
d / d r=-(-k)^{-1 / 2} \cdot\left(\partial / \partial t-(-k)^{1 / 2} \cdot \partial / \partial r\right) \tag{9}
\end{equation*}
$$

We observe that for any smooth function $w=w(r, p, t)$ we have

$$
\begin{align*}
w \cdot L v= & (w v)_{t t}+k \cdot(w v)_{r r}+v_{r} \cdot k\left(w / r-2 w_{r}\right)-2 w_{t} v_{t} \\
& -\left(k w_{r r}+w_{t t}\right) \cdot v+\left(k w / r^{2}\right) \cdot v_{p p} \\
= & -(-k)^{1 / 2} \cdot d\left(w\left(v_{t}+(-k)^{1 / 2} \cdot v_{r}\right) / d r+v\left(w_{t}+(-k)^{1 / 2} \cdot w_{r}\right)\right) \\
& +B(w) \cdot v_{r}+v \cdot F(w)+D(w, p) \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
d\left((w v)_{t}+(-k)^{1 / 2} \cdot(w v)_{r}\right) / d r= & -(-k)^{-1 / 2} \cdot\left(k \cdot(w v)_{r r}+(w v)_{t t}\right. \\
& \left.\left.-(w v)_{r} \cdot k^{\prime} \cdot(-k)^{-1 / 2}\right) \cdot(1 / 2)\right)
\end{aligned}
$$

$$
\begin{gathered}
B(w)=-2 k \cdot w_{r}+(1 / r) \cdot w \cdot k+w \cdot k^{\prime} \cdot(-k)^{-1 / 2} \cdot(1 / 2), \\
F(w)=-k \cdot w_{r r}-w_{t t}+w_{r} \cdot k^{\prime} \cdot(-k)^{-1 / 2} \cdot(1 / 2), \\
D(w, p)= \\
\left(k w / r^{2}\right) \cdot v_{p p}-2 w_{t} v_{t}, \\
\\
\tilde{B}=\left[k w / r^{2}\right] \cdot v_{p p}, \quad \tilde{D}=-2 w_{t} \cdot v_{t} .
\end{gathered}
$$

We set as

$$
\begin{equation*}
w=w(r, p, t)=r^{1 / 2} \cdot(-k)^{-1 / 4} \tag{11}
\end{equation*}
$$

such that $-2 k \cdot w_{r}+(1 / r) \cdot k w$ vanishes.
Then the identity (10) becomes, on S_{4}^{e},

$$
\begin{equation*}
w \cdot L v=-(-k)^{1 / 2} \cdot d\left(d^{+}(w v)\right) / d r+G(w)+v \cdot F(w) \tag{12}
\end{equation*}
$$

where $d^{+}=\partial / \partial t+(-k)^{1 / 2} \cdot \partial / \partial r$ such that $d^{+}(w v)=w \cdot d^{+}(v)+v \cdot d^{+}(w)$, and $G(w)=B(w) \cdot v_{r}+\tilde{D}(w, v)$.

Assume the operators

$$
\begin{equation*}
R_{e} v=\int_{e}^{r_{0}} d r \cdot \int_{0}^{2 \pi} v(r, p, t) d p \quad \text { on } S_{4}^{e} \tag{13}
\end{equation*}
$$

In addition, we assume the following condition

$$
\begin{equation*}
V(p)=\int_{p=0}^{2 \pi} v_{p p} d p=0 \quad \text { on } S_{4}^{e} \tag{+}
\end{equation*}
$$

Then we have the following properties:
(i) $R_{e} \tilde{B}=0$ because of $(+)$. Define

$$
\begin{equation*}
R v=\lim _{e \rightarrow 0} R_{e} v \tag{14}
\end{equation*}
$$

when the limit exists. Then $\boldsymbol{R} \widetilde{B}=0$.
(ii) If $Q=\left(r_{0}, p, T_{0}\right)$ and $Q_{e}=\left(e, p, T^{0}\right)$, then for $P=P(0,0, T(<0))$

$$
\begin{align*}
& R_{e}\left[(-k)^{1 / 2} \cdot d\left(d^{+}(w v)\right) / d r\right]=\int_{0}^{2 \pi} d p \int_{e}^{r_{0}} v(P) \cdot d\left(d^{+}(w)\right) / d r \cdot d r \\
& \quad \cdot(-k(t))^{1 / 2}+\left.(-k(t))^{1 / 2} \cdot \int_{0}^{2 \pi} w d^{+}(v)\right|_{Q_{e}} ^{Q} d p \\
& \quad+\left.(-k)^{1 / 2} \cdot \int_{0}^{2 \pi}(v-v(P)) \cdot d^{+}(w)\right|_{Q_{e}} ^{Q} d p \tag{15}
\end{align*}
$$

$$
\begin{align*}
\lim _{e \rightarrow 0}\left(\left.\int_{0}^{2 \pi} w \cdot d^{+}(v)\right|_{Q_{e}} d p\right)= & \lim _{e \rightarrow 0}\left(\left.\int_{0}^{2 \pi}(v-v(P)) \cdot d^{+}(w)\right|_{Q_{e}} d p\right)=0 \tag{16}\\
R\left[(-k)^{1 / 2} \cdot d\left(d^{+}(w v)\right) / d r\right]= & \int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}} v(P) \cdot d\left(d^{+}(w)\right) / d r \cdot d r \\
& \cdot(-k)^{1 / 2}+\left.(-k)^{1 / 2} \cdot \int_{0}^{2 \pi} w \cdot d^{+}(v)\right|_{Q} d p \\
& +\left.(-k)^{1 / 2} \cdot \int_{0}^{2 \pi}(v-v(P)) \cdot d^{+}(w)\right|_{Q} d p \tag{17}
\end{align*}
$$

(iii) Similarly, we find

$$
\begin{align*}
R(G(w))= & -\int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}}(v-v(P)) \cdot d\left(w k^{\prime} / 2(-k)^{1 / 2}\right) / d r \cdot d r \\
& +\left.\int_{0}^{2 \pi}\left(w k^{\prime} / 2(-k)^{1 / 2}\right) \cdot(v-v(P))\right|_{Q} d p \tag{18}
\end{align*}
$$

(iv) Finally,

$$
\begin{equation*}
R(v \cdot F(w))=\int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}} v \cdot d\left(d^{+}(w)\right) / d r \cdot d r \cdot(-k)^{1 / 2} \tag{19}
\end{equation*}
$$

Substituting (i)-(iv) into (12) we get the following fundamental integral identity

$$
\begin{align*}
R(w \cdot L v)= & \int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}}(v-v(P)) \cdot\left[d\left(d^{+}(w)\right) / d r \cdot(-k)^{1 / 2}\right. \\
& \left.-d\left(w \cdot k^{\prime} / 2(-k)^{1 / 2}\right) / d r\right] d r \\
& -\left.\int_{0}^{2 \pi} w\left[(-k)^{1 / 2} \cdot d^{+}(v)-(v-v(P)) \cdot k^{\prime} / 2(-k)^{1 / 2}\right]\right|_{Q} d p \\
& -\left.(-k)^{1 / 2} \cdot \int_{0}^{2 \pi}(v-v(P)) \cdot d^{+}(w)\right|_{Q} d p \tag{20}
\end{align*}
$$

Theorem 1. Assume that $v(r, p, t) \in C^{2}(\bar{D})$ satisfies the differential inequality $L v=F_{0} \leqslant 0$, and that $v\left(r, p, T_{0}\right)=0, v_{t}\left(r, p, T_{0}\right)=h(r, p) \leqslant 0$, where D is defined above, and assume the following condition:

$$
\begin{equation*}
d\left(w \cdot k^{\prime} / 2(-k)^{1 / 2}\right) / d r-d\left(d^{+}(w)\right) / d r \cdot(-k)^{1 / 2} \geqslant 0 \tag{21}
\end{equation*}
$$

and $(+)$. Then $v(r, p, t) \leqslant 0$ in D.

Proof. Let P be the point with the smallest t-coordinate T for which v vanishes. The identity (20) implies

$$
\begin{equation*}
0 \geqslant-\left.\int_{0}^{2 \pi} w \cdot v_{t}\right|_{Q} d p, \tag{22}
\end{equation*}
$$

which is a contradiction. By continuity v cannot become positive even when $v_{t} \leqslant 0$ is not strict. Therefore, under the condition (+) and condition (21) the operator L has a maximum property in D.
Q.E.D.

Theorem 2. Assume that $v(r, p, t) \in C^{2}(\bar{D})$ satisfies the differential inequality

$$
\begin{align*}
L v= & k(t) \cdot\left(v_{r r}+\left(1 / r^{2}\right) \cdot v_{p p}\right)+(1 / r) \cdot k(t) \cdot v_{r}+v_{t t}+a(r, p, t) \cdot v_{r} \\
& +b(r, p, t) \cdot v+c(r, p, t) \cdot v_{t}+m(r, p, t) \cdot v=F_{0}^{0}(r, p, t) \tag{23}
\end{align*}
$$

where a, b, c, and m are continuously differentiable functions of the independent variables r, p, t in D described above, and that $v(r, p, t)=0$, $v_{t}(r, p, t) \leqslant 0, F_{0}^{0} \in C^{0}(\bar{D})$. Assume, in addition, the conditions

$$
\begin{gather*}
d\left[w \cdot\left(k^{\prime} / 2(-k)^{1 / 2}+\left(a-\int_{0}^{r} a_{r} \cdot d r\right)\right)\right] / d r \\
\quad-d\left(d^{+}(w)\right) / d r \cdot(-k)^{1 / 2} \geqslant 0 \tag{24}\\
c=k^{-1} \cdot \int_{0}^{r} a d r-(-k)^{-1 / 2} \cdot\left(a-\int_{0}^{r} \cdot a_{r} d r\right), \tag{25}\\
b_{p}-m+\int_{0}^{r}(a)_{p} / 2 k d r \geqslant 0 \tag{26}\\
w=r^{1 / 2} \cdot(-k)^{1 / 4} \cdot \exp \left(\int_{0}^{r} a / 2 k \cdot d r\right) \tag{27}
\end{gather*}
$$

and $(+)$. Then $v(r, p, t) \leqslant 0$ in D.
Proof. We prove in the same way as in the case of (20) that the following fundamental integral identity holds, as well:

$$
\begin{aligned}
R(w \cdot L v)= & \int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}}(v-v(P)) \cdot\left[d\left(d^{+}(w)\right) / d r \cdot(-k)^{1 / 2}\right. \\
& \left.-d\left(w k^{\prime} / 2(-k)^{1 / 2}+\left(a-\int_{0}^{r} a_{r} \cdot d r\right)\right) / d r\right] d r
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{2 \pi} d p \cdot \int_{0}^{r_{0}} v \cdot\left(m \cdot w-(w \cdot b)_{p}\right) d r-\int_{0}^{2 \pi} w\left[d^{+}(v) \cdot(-k)^{1 / 2}\right. \\
& \left.-\left(k^{\prime} / 2(-k)^{1 / 2}+\left(a-\int_{0}^{r} a_{r} d r\right)\right) \cdot(v-v(P))\right]\left.\right|_{Q} d p \\
& -\left.(-k)^{1 / 2} \cdot \int_{0}^{2 \pi}(v-v(P)) \cdot d^{+}(w)\right|_{Q} d p \tag{28}
\end{align*}
$$

The proof now is obvious.
Q.E.D.

Remark. To have $v_{t}<0$ given $v_{t} \leqslant 0$, we choose

$$
v_{0}=v(r, p, t)-c_{1} \cdot \exp \left(c_{2} \cdot t\right)<0, \quad \text { for } \quad c_{i}, i=1,2, \text { both positive }
$$

such that $c_{2}^{2}+c_{2} \cdot c+m>0$.

2. Maximum Principle in $\mathbb{R}^{n+1}(n \geqslant 2)$

Consider the hyperbolic equation

$$
\begin{equation*}
L u=k(t) \cdot \sum_{i=1}^{n} u_{x_{i} x_{i}}+u_{t t}=f(x, t) \in C^{0}(\bar{D}) \tag{29}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the domain D is defined as

$$
D=\left\{(x, t): T_{0} \leqslant t \leqslant T<0, \sum_{i=1}^{n} x_{i}^{2}<\left(\int_{t}^{T}(-k(s))^{1 / 2} d s\right)^{2}\right\}
$$

Let S_{0} be the portion of the boundary of D, which lies in the plane $t=T_{0}$, and S_{4} be the remainder of the boundary G of G, which is a characteristic conoid with respect to (29).

Theorem 3. Assume that $v(r, p, q, t) \in C^{2}(\bar{D})$ satisfies the differential inequality

$$
\begin{align*}
L v= & k(t) \cdot\left(v_{r r}+g^{-1}\left(\partial\left(g_{0} v_{p} / r^{2}\right) / \partial p+\sum_{i=1}^{n-2} \partial\left(g_{i} v_{q_{i}}\right) / \partial q_{i}\right)\right) \\
& +\mid(n-1) / r\rceil \cdot k(t) \cdot v_{r}+v_{t t}+a_{1}(r, p, q, t) \cdot v_{r} \\
& +a_{2}(r, p, q, t) \cdot v+\sum_{i=1}^{n-2} a_{i+2}(r, p, q, t) \cdot v_{q_{i}} \\
& +b(r, p, q, t) \cdot v_{i}+m(r, p, q, t) \cdot v=F(r, p, q, t) \leqslant 0, \tag{30}
\end{align*}
$$

where $a_{i}, i=1,2, \ldots, n, b$, and m are continuously differentiable functions of the independent variables r, p, q, t in D described above, and that $v(r, p, q, t)=0, v_{t}(r, p, q, t) \leqslant 0, F \in C^{0}(\bar{D})$, and

$$
\begin{aligned}
& x_{1}=r \cdot \cos p \cdot \sin q_{1} \cdot \sin q_{2} \cdots \sin q_{n-2}, \\
& x_{2}=r \cdot \sin p \cdot \sin q_{1} \cdot \sin q_{2} \cdots \sin q_{n-2}, \\
& \vdots \\
& x_{n-1}=r \cdot \cos q_{n-3} \cdot \sin q_{n-2}, \\
& x_{n}=r \cdot \cos q_{n-2}, \quad p \in[0,2 \pi], \\
& q=\left(q_{1}, q_{2}, \cdots, q_{n-2}\right), \quad q_{i} \in[0, \pi], \quad i=1,2, \ldots, n-2, \\
& g=\sin q_{1} \cdot \sin ^{2} q_{2} \cdots \sin ^{n-2} q_{n-2}=g_{n-2}, \\
& g_{0}=\operatorname{cosec} q_{1} \cdot \sin q_{3} \cdot \sin ^{2} q_{4} \cdots \sin ^{n-4} q_{n-2} \\
& g_{1}=\sin q_{1} \cdot \sin q_{3} \cdot \sin ^{2} q_{4} \cdots \sin ^{n-4} q_{n-2}, \\
& g_{2}=\sin q_{1} \cdot \sin ^{2} q_{2} \cdot \sin _{q_{3}} \cdot \sin ^{2} q_{4} \cdots \sin ^{n-4} q_{n-2}, \\
& g_{3}=\sin q_{1} \cdot \sin ^{2} q_{2} \cdot \sin ^{3} q_{3} \cdot \sin ^{2} q_{4} \cdot \sin ^{3} q_{5} \cdots \sin ^{n-4} q_{n-2}, \\
& g_{n-3}=\sin q_{1} \cdot \sin ^{2} q_{2} \cdots \sin ^{n-3} q_{n-3} \cdot \sin ^{n-4} q_{n-2}, \\
& g_{n-2}=g .
\end{aligned}
$$

Assume, in addition the conditions

$$
\left.\begin{array}{l}
d\left[w \cdot\left(k^{\prime} / 2(-k)^{1 / 2}+\left(a_{1}-\int_{0}^{r}\left(a_{1}\right)_{r} d r\right)+(-k)^{1 / 2} \cdot\left(b-\int_{0}^{r} b_{r} d r\right)\right)\right] d r \\
\quad-(-k)^{1 / 2} \cdot d\left(d^{+}(w)+b \cdot w\right) / d r \geqslant 0 \\
{\left[k^{\prime} / 2(-k)^{1 / 2}\right]+\left(a_{1}-\int_{0}^{r}\left(a_{1}\right)_{r} d r\right)+(-k)^{1 / 2} \cdot\left(b-\int_{0}^{r} b_{r} d r\right)} \\
\quad=(-k)^{1 / 2} \cdot \partial\left(\int_{0}^{r}\left(a_{1}+(-k)^{1 / 2} \cdot b\right) / k \cdot d r\right] / \partial t-k^{\prime} / 2 k
\end{array}\right] \begin{aligned}
& \sum_{i=1}^{n-2} \int_{0}^{r}\left(\left(a_{1}\right)_{q_{i}}+(-k)^{1 / 2} \cdot b_{q_{i}}\right) / 2 k d r+\left(a_{2}\right)_{p}-m+\sum_{i=1}^{n-2}\left(a_{i+2}\right)_{q_{i}} \\
& \quad+\int_{0}^{r}\left(\left(a_{1}\right)_{p}+(-k)^{1 / 2} \cdot b_{p}\right) / 2 k d r \geqslant 0, \\
& \quad w=r^{(n-1) / 2} \cdot(-k)^{-1 / 4} \cdot \exp \left(\int_{0}^{r}\left(a_{1}+(-k)^{1 / 2} \cdot b\right) / 2 k d r\right) \cdot \sin q_{1} \\
& \quad \cdot \sin ^{2} q_{2} \cdots \sin ^{n-2} q_{n-2},
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{p=0}^{2 \pi} v_{p p} d p=\int_{q_{i}=0}^{\pi} v_{a_{1} q_{i}} d q_{i}=0, \quad i=1,2, \ldots, n-2, \text { on } S_{4}^{e} \tag{36}
\end{equation*}
$$

where S_{4}^{e} is the part of S_{4}, such that $r_{0}>e$. Then $v(r, p, q, t) \leqslant 0$ in D.
Proof. We define w as in (34) in order that the expression $-2 k \cdot w_{r}+$ ($n-1$) $\cdot k \cdot w / r$ vanishes if $a_{1}-b=0$. Let us assume the operators

$$
\begin{align*}
R_{e} v & =\int_{e}^{r_{0}} d r \cdot \oint v(r, p, q, t) d S \quad \text { on } S_{4}^{e} \tag{37}\\
d S & =g \cdot d q_{1} \cdot d q_{2} \cdots d q_{n-2} \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
R v=\lim _{e \rightarrow 0} R_{e} v \tag{39}
\end{equation*}
$$

when the limit exists. Then the proof follows.
Q.E.D.

References

1. A. Douglis, The problem of Cauchy for linear hyperbolic equations of 2 nd order, Comm. Pure Appl. Math. 7 (1954), 271-295.
2. M. H. Protter and H. F. Weinberger, "Maximum Properties in Differential Equations of Second Order," Prentice-Hall, Englewood Cliffs, N.J.
3. D. Sather, Maximum properties of Cauchy's problem in 3-dimensional space-time, Arch. Rational Mech. Anal. 18 (1965), 14-26.
4. D. Sather, A maximum property of Cauchy's problem in n-dimensional space-time, Arch. Rational Mech. Anal. 18 (1965), 27-38.
5. H. F. Weinberger, A maximum property of Cauchy's problem in 3-dimensional spacetime, Proc. Symp. Pure Math. IV. Partial differential equations, Proc. Amer. Math. Soc. (1961), 91-99.
