
International Journal of Pure & Applied Mathematical Sciences  
ISSN 0972-9828 Vol.2 No.1(2005), pp. 92-101 
© GBS Publishers & Distributors (India) 
http://www.gbspublisher.com/ijpams.htm 
 

 
 

On  the Cauchy-Ulam  Stability of the Jensen Equation   
in C*-Algebras 

 
John Michael Rassias 

 

Pedagogical Department  E.E. 
National and Capodistrian University of Athens 

4, Agamemnonos Str., Aghia Paraskevi   
Attikis 15342, Greece. 

E-mail: jrassias@primedu.uoa.gr 
 

Abstract 
 

In 1964, Ulam raised the general problem: “When is it true that by 
changing a little the hypotheses of a theorem one can still assert that the 
thesis of the theorem remains true or approximately true?” In this article, 
we consider almost unital approximately linear mappings h : A → B, in 
unital C*-algebras. Besides, we give conditions in order for h to be a *-
homomorphism and establish results for *-derivations. Furthermore, we 
investigate the Cauchy-Ulam stability of the Jensen equation in unital      
C*-algebras. Finally we establish the Cauchy-Ulam stability and                 
*-homomorphisms, as well as *-derivations.  
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1.  Introduction 

 
In 1940 S. M. Ulam [12] proposed at the University of Wisconsin the problem: "Give 
conditions in order for a linear mapping near an approximately linear mapping to 
exist." In 1964 he proposed the more general problem: " When is it true that by 
changing a little the hypotheses of a theorem one can still assert that the thesis of the 
theorem remains true or approximately true?” In 1978 P. M. Gruber [2] proposed the 
analogous problem: "Suppose a mathematical object satisfies a certain property 
approximately. Is it then possible to approximate this object by objects, satisfying the 
property exactly?" According to P.M. Gruber this kind of stability problems is of 
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particular interest in probability theory and in the case of functional equations of 
different types. 
Theorem 1.  Let X be a real  normed linear space and let Y be a real complete 
normed linear space. Assume in addition that  f : X → Y is a mapping for which there 
exist constants � ≥ 0  and p∈\ – {1} such that  

                                   ( ) [ ] �� �S�S
\[����\�I�[�I\[I ≤+−+                                        

for all x, y ∈ X  . Then there exists a unique additive mapping  L : X → Y satisfying  

( ) ( ) S

S
[�[/[I

�� −
≤− �

 

for all x ∈ X  . If in addition f : X → Y is a mapping such that the transformation 
 t → f (tx) is continuous in t ∈\   for each fixed x∈ X, then L is \ -linear mapping. 
 
Remark. The above Ulam stability theorem was obtained by D.H. Hyers [3] for the 
case p = 0,  and by the author ( [6]-[10] ) for the case p ∈ (−∞ , 1) ∪ (1, ∞ ).In 
particular, P. Gavruta [1] gave a counter-example for the case p = 1. Besides, T. Trif 
[11] established an analogous stability of the Jensen type functional equation deriving 
from an inequality of T.Popoviciu[5] for convex functions. However, T. Trif [11] 
generalized the Popoviciu equation  
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Let us consider two real linear spaces X and Y and the Jensen functional equation 
 

                                        ( ) ( )\I[I
\[

I +=




 +

�
�                                           (1)  

for f : X → Y and all x, y ∈ X  , and the additive Cauchy functional equation 
 
                                ( ) ( ) ( )\I[I\[I +=+                                                                (2)  
 
for  all x, y ∈ X .Therefore we establish below an interesting  theorem and a 
proposition connecting the Jensen equation (1) with the Cauchy equation (2). 
 
Theorem 2. Let X be a real normed linear space and let Y be a real complete normed 
linear space. Assume in addition that  f : X → Y with f(0) = 0 is a mapping for which 
there exists a constant � ≥ 0 such that                                

[ ] ����\�I�[�I
\[

�I�� ≤+−




 +

�
                                                                             (* ) 

for all x, y ∈ X  . Then there exists a unique Jensen  mapping  J : X → Y satisfying the 
functional equation (1) and the functional inequality 
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( ) ( ) �≤− �[-[I                                                    (** ) 

 
for all x ∈ X  . 
Proof. Substituting  x = 0 and y = 2x in the above inequality (* ) and employing  
condition f(0) = 0, we get                                         

       ( ) ( ) ( )[ ] ���[II[I� ≤+− ��� ,or  ( ) ( ) ( )��
��

�
�

−− −≤− �� �
�
����[I[I�  ,  

 for all x ∈ X . Thus, in general, one establishes  ( ) ( ) ( ) �→−≤− −− QQQ
���[I[I ����  

 as  n ∞→ ,for all x ∈ X . Thus taking the limiting form    ( ) ( )[IOLP[- QQ

Q
��

−

∞→
=  ,  

and employing classical techniques on these concepts, we prove the inequality (** ) 

for a unique mapping J : X → Y  of the above limiting form. The rest of the proof is 
omitted as analogous to the proofs of our old theorems ([6]-[10]).  
 
Note .If we had replaced x = 0 and y = x in (* ), then 

( ) ( ) ����[I[I ≤− −�
��  

and, in general, ( ) ( ) ( ) ∞→
−
−=+++≤− −

��

��
�����

�

Q
QQ�Q ������[I[I � , as n ∞→ . 

Thus the inequality (** ) does not hold.    

Proposition 1. A function f : X → Y  between two real linear spaces X and Y satisfies 
the Jensen equation (1) for all x, y ∈ X if and only if there exists an additive Cauchy 
mapping C : X → Y  satisfying (2) and such that  
 
                                       ( ) ( ) ( )�I[&[I +=                                                    (3)     

for all x ∈ X 
 
Proof. Necessity( )⇒ . Let us assume that a mapping f : X → Y  satisfies the Jensen 

equation (1). We consider C : X → Y  and g : X → Y  two functions given by the 
formulas 

       ( ) ( ) ( )[ ][I[I[& −−=
�

�
    and    ( ) ( ) ( )[ ] ( )�

�

�
I[I[I[J −−+= ,                     (4)    

respectively, for all x ∈ X. Therefore 
 

( ) ( ) ( ) ( )�I[J[&[I ++= ,                                                                                        (5)    
 
for all x ∈ X. Claim that C satisfies the additive Cauchy equation (2) and that g(x) = 0 
in X. In fact, 

( ) ( )\&[&
\[

& +=




 +

�
�                                                                (6)     

and 
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                                         ( ) ( )\J[J
\[

J +=




 +

�
�                                                 (7)  

for all x, y ∈ X, because f satisfies (1) for all x, y ∈ X and (4)-(5) hold. By virtue of 
(4) we find the relations 
 
                                    ( ) ( )[&[& −=−    and   ( ) ( )[J[J =−                                     (8)  

for all x ∈ X. Setting x = 0 in the former form of (4) and y = 0 in (6), we get C(0) = 0 
and                                             ( ) ( )[&[& =−�

��                                                  (9)     
 
for all x ∈ X. From (6) and (9), one obtains 
 

( ) ( ) ( ) ( )( ) ( ) ( )\&[&\[&\&[&\[& −−+=−−+ −�
��                        

( ) ( )[ ] ( ) ( ) �=−−+= \&[&\&[& ,or 

                                                 ( ) ( ) ( )\&[&\[& +=+        (10) 

for all x, y ∈X. Therefore, C is an additive Cauchy mapping. 
 
On the other hand, substituting x = 0 in the latter form of (4) and y = 0 in (7), we find 
g(0) = 0 and  
 ( ) ( )[J[J =−�

��                                                  (11) 

for all x ∈ X. Taking into account (7) and (11), we get 
 ( ) ( ) ( )\J[J\[J +=+                                            (12) 
      
for all x, y ∈X. Placing y = -x in (12) yields  ( ) ( ) ( )[J[JJ −+=� .From the eveness of 

g, by the latter form of (8) and g(0) = 0, one establishes     g(x) = 0 for all x ∈ X. 
Sufficiency ( )⇐ . The converse is omitted as clear, completing the proof of the 
Proposition 1. 
Corollary 1.  Let X be a real normed linear space and let Y be a real normed linear 
space. A mapping f : X → Y with f(0) = 0 satisfies the Jensen functional equation (1) 
if and only if the mapping f : X → Y satisfies the additive Cauchy functional equation 
(2). 
Corollary 2.  A continuous function f : \  → \  satisfies  Jensen equation  (1) 
(or(7)) for all  x, y ∈ \  if and only if it has the form    f(x) = .x + � ,with . and � 
arbitrary real constants. 
 
Let us introduce below some basic terminology, from functional analysis. 
 
An algebra R is a linear space over ^  together with a multiplication such that  

( ) ( )][\\][ = , ( ) [][\]\[ +=+ , ( ) \][]]\[ +=+ , and ( ) ( ) ( )\[\[[\ ��� ==  

for  x, y, z ∈ \  and � ∈ ^ . A Banach space R is called a Banach algebra (or normed 
ring) if  \�[�[\� ≤  is satisfied for all  x, y ∈ \ .When a Banach algebra contains a 
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unity element e with respect to the multiplication we call it unital and we can suppose 
�=�H� .An involution in a Banach algebra R is an operation [[ →  from \  into 

itself that satisfies the properties: ( ) \[\[ +=+ ; ( ) [[ �� =  ; ( ) [\[\ = ; 

( ) [[ =  for  x, y, ∈ \  and � ∈ ^ . A Banach algebra with an involution such that 

[[ =  is called a Banach * -algebra. A mapping h : A → B between two Banach  

* -algebras A and B is a homomorphism if   ( ) ( ) ( )\K[K[\K =  for all  x, y ∈ A.  A * -

homomorphism h : A → B between two Banach * -algebras A and B is a 

homomorphism which preserves involutions, i.e. ( ) ( )[K[K = . A Banach  * -algebra 

R satisfying 
�

[[[ =  for all x ∈ \  is called a C*-algebra. A  ^ -linear mapping 

/: A → A in a C*-algebra A is called a derivation in A if its domain D(/) is a dense 
subalgebra of A and ( ) ( ) ( )\[\[[\ /// +=  for all  x, y ∈ D(/). If, moreover, x ∈ D(/) 

implies x* ∈ D(/) and ( ) ( )[[ // = , then / is a  * -derivation. Finally a mapping h : 

A → B is an almost unital mapping if an element ( )HKOLP QQ

Q

−

∞→
��   in B is invertible.  

 
     J.-R. Lee and D.-Y. Shin [4] achieved the Cauchy-Ulam stability of the Trif 
functional equation in C*-algebras.In this paper we apply our Theorem 1 to almost 
unital mappings h : A → B between unital C*-algebras A and B and give conditions in 
order for h to be a * -homomorphism. We also investigate the Cauchy-Ulam stability 

of the Jensen equation ( ) ( )\K[K
\[

K +=




 +

�
�  in C*-algebras. Finally we establish 

the Cauchy-Ulam stability and * -homomorphism, as well as, * -derivations. 

   We assume throughout this paper, that A and B are unital C*-algebras with unit e. 
Besides we denote with U(A) the set of all unitary elements. We note that  

( ) { }�XXXX�$X�$8 �==∈=  is the unitary group in A. 

 
2.  The Jensen Equation and Almost Unital Mappings 
 

Let us denote ( ) ( ) ( ) ( )[ ]\K[K\[K\�[K$ +−




 += �
�

�

�
�  for given mapping h: A → 

B, any { }1  : 1Lµ λ λ∈ = ∈ =^ , and for all all  x, y ∈ A. 

Theorem 3.Let h: A → B be an almost unital mapping such that h(0)=0, and  
( ) ( ) ( )XK�[K[XK QQ

�� =  for all x ∈ A, all u ∈ U(A), and all sufficiently large integers 
n.If the condition 

                                            ( ) �
�

≤�\�[K$� , �≥� ,                               (13)    

holds for all �/∈�  and all x, y ∈ A then h is a homomorphism. If, in addition, the 
condition 
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                                      ( ) ( ) �≤− XKXK� QQ
��                                          (14)       

holds  for all u ∈ U(A),and all sufficiently large integers n, then h is a * -

homomorphism. 
 
Proof. Setting � =1 in (13) and employing Theorem 1 with p = 0 and Proposition 1 
with f(0)=0 one proves that there exists a unique additive mapping L : A → B defined 
by  

( ) ( )[KOLP[/ QQ

Q
��

−

∞→
=  

for all x ∈ A ([6] – [10]).Placing y = x in (13), we find the inequality  

( ) ( ) ( )� ���
�

≤−= �[K[K��[�[$  

for all �/∈�  and all x ∈ A. Substituting x in this inequality with 2nx, one gets  

( ) ( ) ( )
����

� ��� +−− ≤− QQQQ �[K[K� ,or   ( ) ( ) ���� =−−

∞→
�[K[K�OLP QQQ

Q
�� ,or 

( ) ( )[KOLP[KOLP
QQ

Q

QQ

Q
����

−

∞→

−

∞→
= ��  

for all �/∈�  and all x ∈ A.  

Therefore ( ) ( ) ( ) ( )[/[KOLP[KOLP[/
QQ

Q

QQ

Q
���� === −

∞→

−

∞→
���� , for all �/∈�  and all x 

∈ A. But it is well-known that if an additive mapping L : A → B satisfies L(�x) = 
�L(x) for all �/∈� , then L is a ̂ -linear mapping ([5], [6], [8]). Thus L is ^ -linear.  
We now claim that L is a homomorphism. In fact, from the hypothesis that 

( ) ( ) ( )XK[K[XK QQ
�� =  we get 

( ) ( ) ( ) ( ) ( ) ( )X/[KXKOLP[K[XKOLP[X/ QQ

Q

QQ

Q
=== −

∞→

−

∞→
���� . 

 

Thus from ̂ -linearity of L, one finds  ( ) ( ) ( ) ( )2 2 2 2n n n nL xu L xu h u L u− −= = . 

Therefore 

( ) ( )[ ] ( )X/�[KOLP�[X/OLP QQ

QQ
��

−

∞→∞→
= ,  or   L(xu) = L(x)L(u) 

 
 for all x ∈ A and all u ∈ U(A). 
But any element in a C*-algebra is a finite linear combination of unitary elements in A 

and so any y ∈ A is of the form 
m

j j
j 1

y ην
=

= ∑ for  η j ∈ C and vj ∈ U(A).  

Hence ( ) ( ) ( ) ( ) ( )
m m

j j j
j 1 j 1

L x  jL xy L x L v L x L yη ν η
= =

 
= = = 

 
∑ ∑  

 
for all x,y ∈ A, yielding that L is a homomorphism.Besides  h(x)L(e) = L(xe) = L(x) 
L(e) for all x ∈ A, because e is a unitary element of A.  
Therefore the identity 
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     L(x) = h(x)                                                                  (15) 
 
holds for all x ∈ A, because ( ) ( )HKOLPH/

QQ

Q
��

−

∞→
=  is invertible as h is almost unital. 

Hence h is a homomorphism. From (14) we find  
 

( ) ( ) ( ) ����� =≤− −

∞→

−

∞→

Q

Q

QQQ

Q
OLP�XKXK�OLP � , or   

( ) ( )XKOLPXKOLP QQ

Q

QQ

Q
����

−

∞→

−

∞→
=  ,    or 

( ) ( )X/X/ =  

for all u ∈ U(A). But, in addition, the ̂ -linear map L is a homomorphism. We now 

claim that L is a * -homomorphism. In fact, any x ∈ A is of the form ∑
=

=
N

L

LLX[
�

� for �i 

∈ ^  and  ui ∈ U(A). Thus ( ) ( ) ( )
k k k

i i i i i i
i 1 i 1 i 1

* u * L u * L u *L x L ξ ξ ξ
= = =

  = = =    
∑ ∑ ∑   

                               = ( ) ( )
k

i i
i 1

L u * *L xξ
=

  = 
 
∑                                      (16)  

for all x ∈ A, �i ∈ ^  and  ui ∈ U(A), yielding L is a * -homomorphism. Therefore from 

(15) – (16), one gets ( ) ( )[K[K =  for all x ∈ A and thus h is also a * -

homomorphism, completing the proof of the Theorem 3.                                                                       
 
3. The Cauchy-Ulam Stability and * -Homomorphisms 

Let us denote  ( ) ( ) ( ) ( )[ ] ( ) ( )ZK]K\K[K]Z\[KZ�]�\�[K+ −+−




 ++= �
�

�

�

�

�
�  

for any � ∈ L1 and for all x, y, z, w ∈ A, and for a given mapping h : A → B from a 
unital C*-algebra A to a unital C*-algebra B. 
Theorem 4. Let h : A → B be a mapping such that h(0) = 0. If  two conditions 
 

                                      ( ) �
�

≤�Z�]�\�[K+� ,   �≥� ,                               (17)    

                                         ( ) ( ) �≤− XKXK� QQ
��                                     (18)     

 
hold for all � ∈ L1 ,all u ∈ U(A) and all x, y, z, w ∈ A, all sufficiently large integers n, 
then there exists a unique * -homomorphism L : A → B satisfying  

                          
     ( ) ( ) �≤− �[/[K� ,                                  (19)   

for all x ∈ A. 
 
Proof. Setting � = 1 and z = w = 0 in (17) and employing ideas from the proof of the 
above Theorems 1-3, one gets that there exists a unique ^ -linear mapping L : A → B 
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satisfying (19) and is given by ( ) ( )[KOLP[/ QQ

Q
��

−

∞→
=  for all x ∈ A. Therefore  from 

(18) one finds ( ) ( )[/[/ =  for all x ∈ A. We claim that L : A → B is a 
homomorphism. In fact, putting x = y = 0 and h(0) = 0 in (17), we obtain  
 

( ) �
�

≤�Z�]��K+ �� ,  or   ( ) ( ) �≤−






�ZK]K
]Z

K�
�

�  

 
for all z, w ∈ A. Thus placing 2nz and 2nw on z and w, respectively, and multiplying by 
2-2n we get 

 

( ) ( ) �QQQQQQQ �ZK]K
]Z

K ���
�����

�
���

−−−− ≤−




⋅  for all z, w ∈ A. 

Therefore       

( ) ( )ZKOLP]KOLP
]Z

KOLP QQ

Q

QQ

Q

QQ

Q
����

�
���
�� −

∞→

−

∞→

−

∞→
=





⋅   for all z, w ∈ A. 

     But  ( ) ( )[KOLP[/
QQ

Q
��

−

∞→
= ( )[KOLP

QQ

Q

��
��

−

∞→
=  for all x∈ A. Thus 

( ) 2 2 2 22 2 lim 2 2 lim 2 2 2
2 2 2

n n n n

n n

zw zw zw
L zw L h h− −

→∞ →∞

     = = = ⋅          
    

( )[ ] ( )[ ]ZKOLP��]KOLP� QQ

Q

QQ

Q
����

−

∞→

−

∞→
= ( ) ( )Z/]/=   for all z, w ∈ A. 

 Hence, L is a unique * -homomorphism satisfying the identity (15),completing the 

proof of the Theorem 4. 
 
4.  The Cauchy-Ulam Stability and * -Derivations 
 
     Let us denote    

( ) ( ) ( ) ( )[ ] ( ) ( )Z]KZ]K\K[K
]Z

\[KZ�]�\�[K' −−+−




 ++= �
�

�

��
�  

for any � ∈ L1 and for all x, y, z, w ∈ A, and for a given mapping h : A → A from a 
unital C*-algebra A to itself. 
Theorem 5. Let h : A → A be a mapping such that h(0) = 0. If  conditions 
 

                                      ( ) �
�

≤�Z�]�\�[K' ,   �≥� ,                               (20)    

 
and  (18) ) hold for all � ∈ L1 and all x, y, z, w ∈ A, then there exists a 
 unique*-derivation / : A → A satisfying  

 
                                             ( ) ( ) �/ ≤− �[[K� ,                                           (21)    
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for all x ∈ A. 
 
Proof. Setting � = 1 and z = w = 0 in (21) and employing ideas from the proof of the 
above Theorems 1-3, one gets that there exists a unique ^ -linear mapping / : A → A 
satisfying (21) and is given by ( ) ( )[KOLP[ QQ

Q
��

−

∞→
=/ , for all x ∈ A. Therefore 

( ) ( )[[ // =  for all x ∈ A. We claim that / : A → A is a derivation. In fact, putting x 
= y = 0 and h(0) = 0 in (20), we obtain  
 

( ) �
�

≤�Z�]��K' �� ,  or   ( ) ( ) ( )[ ] �≤+− �Z]KZ]K]ZK�  

 
for all z, w ∈ A. Thus placing 2nz and 2nw on z and w, respectively and multiplying by    
 2-2n, we get 
 

                                 ( ) ( ) ( )[ ]�Z]KZ]K]ZK� QQQQQQ −−− +− ������
��  

                    ( )( ) ( )( )[ ] �QQQQQQQ �Z]KZK]
]Z

K� ���
�����

�
���

−−−− ≤+−




⋅=  

for all z, w ∈ A. Therefore 

                             ( )( ) ( )( )[ ]�Z]KZK]OLP
]Z

KOLP QQQQ

Q

QQ

Q
����

�
���
�� −−

∞→

−

∞→
+=





⋅  

( )[ ] ( )[ ]Z�]KOLP�ZKOLP�] QQ

Q

QQ

Q
����

−

∞→

−

∞→
+= , 

 
for all z, w ∈ A. But   ( ) ( )[KOLP[ QQ

Q
��

−

∞→
=/ ( )[KOLP QQ

Q

��
��

−

∞→
=  for all x∈ A. Thus 

( ) 2 2 2 22 2 lim 2 2 2 lim 2 2 2
2 2 2

n n n n

n n

zw zw zw
zw h hδ δ − −

→∞ →∞

     = = ⋅ = ⋅          

( )[ ] ( )[ ]Z�]KOLP��ZKOLP�] QQ

Q

QQ

Q
����

−

∞→

−

∞→
+=  ( ) ( )Z]Z] // +=  

for all z, w ∈ A. Hence, / is a unique * -derivation satisfying the identity (21), 

completing the proof of the Theorem 5. 
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