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2 JOHN M ICHAEL RASSIAS

1. I NTRODUCTION

In 1940 (and 1968) S. M. Ulam [24] proposed theUlam stability problem:
"When is it true that by slightly changing the hypotheses of a theorem one can still assert that

the thesis of the theorem remains true or approximately true ?"
In 1941 D. H. Hyers [13] solved this problem for linear mappings. In 1951 D. G. Bourgin [3]

was the second author to treat the Ulam problem for additive mappings. In 1978, according to
P. M. Gruber [12], this kind of stability problems is of particular interest in probability theory
and in the case of functional equations of different types. In 1980 and in 1987, I. Fenyö [7,
8] established the stability of the Ulam problem for quadratic and other mappings. In 1987
Z. Gajda and R. Ger [10] showed that one can get analogous stability results for subadditive
multifunctions. Other interesting stability results have been achieved also by the following
authors : J. Aczél [1], C. Borelli and G. L. Forti [2, 9], P. W. Cholewa [4], St. Czerwik [5], and
H. Drljevic [6], and Pl. Kannappan [15]. In 1982-2004 J. M. Rassias ([16, 17, 18, 19, 20, 21,
23]) and in 2003 M. J. Rassias and the author [22] solved the above Ulam problem for different
mappings. In 1999 P. Gavruta [11] answered a question of ours [18] concerning the stability of
the Cauchy equation. In 1998 S.-M. Jung [14] and in 2002-2003 M. J. Rassias and the author
[21, 22] investigated the Hyers-Ulam stability for additive and quadratic mappings on restricted
domains.

In this article we solve the Hyers-Ulam stability problem for quadratic type functional equa-
tions in several variables.

Throughout this paper, letX be a real normed space andY be a real Banach space in the case
of functional inequalities, as well as letX andY be real linear spaces for functional equations.
In this paper we introduce the following quadratic type functional equation in several variables
x1, x2, . . . , xp ∈ X

(1.1)
∑

εj∈{−1,1}

Q

(
x1 +

p∑
j=2

εjxj

)
= 2p−1

p∑
i=1

Q(xi)

for p arbitrary but fixed and equal to2, 3, 4, . . . , with mappingsQ : X → Y .

Definition 1.1. A mappingQ : X → Y is calledquadratic type, if the above-mentioned
quadratic type functional equation (1.1) holds for everyp-dimensional vector(x1, x2, . . . , xp) ∈
Xp with an arbitrary but fixedp = 2, 3, 4, . . . .

We consider the approximately quadratic type functional inequality

(1.2)

∥∥∥∥∥∥
∑

εj∈{−1,1}

f

(
x1 +

p∑
j=2

εjxj

)
− 2p−1

p∑
i=1

f(xi)

∥∥∥∥∥∥ ≤ cKr (x1, x2, . . . , xp)

with approximately quadratic type mappingsf : X → Y , where

Kr (x1, x2, . . . , xp) =
∑

εj∈{−1,1}

∥∥∥∥∥x1 +

p∑
j=2

εjxj

∥∥∥∥∥
r

,

and a constantc ≥ 0 (independent ofx1, x2, . . . , xp ∈ X), r ∈ R − {2}. If we denoteQk =
Qk(x1, x2, . . . , xp) for k = 0, 1, 2, 3, . . . , p− 2, p− 1 with an arbitrary but fixedp = 2, 3, 4, . . . ,

Ep = x1 +
p∑

j=2

εjxj, where forj = 2, 3, . . . , p, such that

Q0 = Q(x1 + x2 + · · ·+ xp) : with all of theεj = 1 in Ep,
Q1 = Q(x1 − x2 + x3 + · · · + xp) + Q(x1 + x2 − x3 + · · · + xp) + · · · + Q(x1 + x2 + x3 +
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HYERS-ULAM STABILITY 3

· · · − xp−1 + xp) + Q(x1 + x2 + x3 + · · ·+ xp−1 − xp): with any one of theεj = −1 and the
rest of theεj = 1 in Ep,
Q2 = Q(x1 − x2 − x3 + · · ·+ xp) + · · ·+ Q(x1 − x2 + x3 + · · · − xp−1 + xp) + Q(x1 − x2 +
x3 + · · ·+ xp−1− xp) + Q(x1 + x2− x3− x4 + · · ·+ xp) + · · ·+ Q(x1 + x2− x3 + x4 + · · ·+
xp−1 − xp) + · · · + Q(x1 + x2 + · · · + xp−2 − xp−1 − xp) : with any two of theεj = −1 and
the rest of theεj = 1 in Ep,
Q3 = Q(x1 − x2 − x3 − x4 + · · ·+ xp−1 + xp) + · · ·+ Q(x1 − x2 − x3 + · · ·+ xp−1 − xp) +
· · ·+ Q(x1 + x2 + · · ·+ xp−3− xp−2− xp−1− xp) : with any three of theεj = −1 and the rest
of theεj = 1 in Ep , . . . ,
Qp−2 = Q(x1−x2−x3−x4−· · ·−xp−1 +xp)+Q(x1−x2−x3−x4−· · ·−xp−2 +xp−1−
xp)+Q(x1−x2 +x3−x4−· · ·−xp−1−xp)+ · · ·+Q(x1 +x2−x3−x4−· · ·−xp−1−xp) :
with anyp− 2 of theεj = −1 and the rest of theεj = 1 in Ep,
Qp−1 = Q(x1 − x2 − · · · − xp): with all of theεj = −1 in Ep,
then the functional equation (1.1) is equivalent to the following functional equation

(1.3)
p−1∑
k=0

Qk(x1, x2, . . . , xp) = 2p−1

p∑
i=1

Q(xi)

Also if fk = fk(x1, x2, . . . , xp) (k = 0, 1, 2, 3, . . . , p−2, p−1) is given as a sum of

(
p− 1

k

)
terms of the formf(x1 +ε2x2 +ε3x3 + · · ·+εpxp) : εj ∈ {−1, 1} (j = 2, 3, . . . , p), in the same
way as the afore-mentionedQk = Qk(x1, x2, . . . , xp) in terms ofQ(x1 + ε2x2 + ε3x3 + · · · +
εpxp), then the functional inequality (1.2) is equivalent to the following functional inequality

(1.4)

∥∥∥∥∥
p−1∑
k=0

fk(x1, x2, . . . , xp)− 2p−1

p∑
i=1

f(xi)

∥∥∥∥∥ ≤ cKr (x1, x2, . . . , xp) .

Note thatKr = Kr(x1, x2, . . . , xp) =
p−1∑
k=0

Rk(x1, x2, . . . , xp), whereRk(x1, x2, . . . , xp) are

equal to the above-mentionedQk(k = 0, 1, 2, . . . , p− 1) with Q replaced by‖·‖r. Thus
R0 = ‖x1 + x2 + · · ·+ xp‖r ,
R1 = ‖x1 − x2 + x3 + · · ·+ xp‖r + ‖x1 + x2 − x3 + · · ·+ xp‖r + . . .
+ ‖x1 + x2 + x3 + · · ·+ xp−1 − xp‖r , . . . , Rp−1 = ‖x1 − x2 − · · · − xp‖r, and
f0 = f(x1 + x2 + · · ·+ xp),
f1 = f(x1−x2+x3+· · ·+xp)+f(x1+x2−x3+· · ·+xp)+· · ·+f(x1+x2+x3 · · ·+xp−1−xp),
. . . , fp−1 = f(x1 − x2 − · · · − xp).
It is useful for the following, to observe that, from (1.3) withxi = 0(i = 1, 2, 3, . . . , p− 2, p−
1, p), we get

(1.5) Qk(0, 0, . . . , 0) =

(
p− 1

k

)
Q(0).

Fork = 0, 1, 2, 3, . . . , p− 1 with p = 2, 3, 4, . . . and

[
p−1∑
k=0

(
p− 1

k

)
− p2p−1

]
Q(0) = 0, or

(1− p)2p−1Q(0) = 0 , because
p−1∑
k=0

(
p− 1

k

)
= (1 + 1)p−1 = 2p−1, or

(1.6) Q(0) = 0.

Now claim that forn ∈ N0 = {0}
⋃

N = {0, 1, 2, . . . }
(1.7) Q (2nx) = (2n)2 Q(x) (n ∈ N0)
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4 JOHN M ICHAEL RASSIAS

Forn = 0, it is trivial. From (1.3), withx1 = x2 = x, xj = 0(j = 3, 4, . . . , p), we obtain

(1.8) Qk(x, x, 0, . . . , 0) =

(
p− 2
k − 1

)
Q(0) +

(
p− 2

k

)
Q(2x)

for k = 0, 1, 2, . . . , p− 1 with

(1.9)

(
p− 2
−1

)
=

(
p− 2
p− 1

)
= 0

for p = 2, 3, 4, ... Therefore from (1.3), (1.6), (1.8) and (1.9), we get

p−1∑
k=0

(
p− 2
k − 1

)
Q(0) +

p−1∑
k=0

(
p− 2

k

)
Q(2x) = 2p−1 [2Q(x) + (p− 2)Q(0)] ,

or 2p−2Q(2x) = 2p−1 [2Q(x)], or

(1.10) Q(2x) = 22Q(x)

which is (1.7) forn = 1. Assume (1.7) is true. From (1.10), with2nx on place ofx, we get

Q
(
2n+1x

)
= 22Q (2nx) = 22 (2n)2 Q(x) =

(
2n+1

)2
Q(x).

This by induction, proves the formula (1.7). Similarly from (1.3), (1.5) and (1.6), with

x1 = x2 = x
2
, xj = 0 (j = 3, 4, . . . , p), we getQk

(
x
2
, x

2
, 0, . . . , 0

)
=

(
p− 2

k

)
Q (x)

(k = 0, 1, 2, . . . , p − 1) and
p−1∑
k=0

(
p− 2

k

)
Q (x) = 2p−1 [2Q (2−1x)] = 2pQ (2−1x), or

Q (2−1x) = 2−2Q(x).
By induction one gets that

(1.11) Q
(
2−nx

)
=
(
2−n
)2

Q(x) (n ∈ N0) .

In fact,Q
(
2−(n+1)x

)
= 2−2Q (2−nx) = 2−2 (2−n)

2
Q(x) =

(
2−(n+1)

)2
Q(x).

2. HYERS-ULAM QUADRATIC TYPE STABILITY

Theorem 2.1. Let X andY be normed linear spaces. Assume thatY is complete. Assume in
addition thatf : X → Y is a mapping for which there exists a constantc ≥ 0 (independent of
x1, x2, . . . , xp ∈ X) andr ∈ R−{2}, such that the above-mentioned quadratic type functional
inequality (1.2) holds for every p-dimensional vector(x1, x2, . . . , xp) ∈ Xp with an arbitrary
but fixedp = 2, 3, 4, . . . . Denote

(2.1) Fn (x) =

{
2−2nf (2nx) , if r < 2
22nf (2−nx) , if r > 2

(n ∈ N0) .

Then the limitQ (x) = lim
n→∞

Fn (x) exists for everyx ∈ X and Q : X → Y is the unique

quadratic type mapping, such that the inequality

(2.2) ‖f(x)−Q(x)‖ ≤ cr ‖x‖r ,

holds for everyx ∈ X , wherecr = c
|1−22−r| =

{
c

22−r−1
, if r < 2

c
1−22−r , if r > 2

.
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HYERS-ULAM STABILITY 5

Proof. It is useful for the following, to observe that, withxi = 0 (i = 1, 2, . . . , p), we get

(2.3) fk(0, 0, . . . , 0) =

(
p− 1

k

)
f(0).

From (1.4) fork = 0, 1, 2, 3, . . . , p − 1 with an arbitrary but fixedp = 2, 3, 4, . . . , we get∥∥∥∥[p−1∑
k=0

(
p− 1

k

)
− p2p−1

]
f(0)

∥∥∥∥ ≤ cKr (0, 0, . . . , 0) = 0, or (p− 1)2p−1 ‖f(0)‖ ≤ 0, or

(2.4) f(0) = 0.

From (1.9), withx1 = x2 = x, xj = 0 (j = 3, 4, . . . , p), we obtain

(2.5) fk(x, x, 0, . . . , 0) =

(
p− 2
k − 1

)
f(0) +

(
p− 2

k

)
f(2x)

andRk(x, x, 0, . . . , 0) =

(
p− 2

k

)
‖2x‖r =

(
p− 2

k

)
2r ‖x‖r for k = 0, 1, 2, . . . , p − 1.

Therefore from (1.4), (1.9), (2.4) and (2.5) we get that

Kr = Kr(x, x, 0, . . . , 0) =

p−1∑
k=0

Rk (x, x, 0, . . . , 0) = 2p+r−2 ‖x‖r ,

and ∥∥∥∥∥
p−1∑
k=0

(
p− 2
k − 1

)
f(0) +

p−1∑
k=0

(
p− 2

k

)
f(2x)− 2p−1 [2f(x) + (p− 2)f(0)]

∥∥∥∥∥
≤ cKr (x, x, 0, . . . , 0) ,

or ∥∥2p−2f(2x)− 2pf(x)
∥∥ ≤ c

{
p−1∑
k=0

(
p− 2

k

)}
‖2x‖r = c2p+r−2 ‖x‖r ,

or

(2.6)
∥∥f(x)− 2−2f(2x)

∥∥ ≤ c2r−2 ‖x‖r = cr

(
1− 2r−2

)
‖x‖r ,

wherecr = c
22−r−1

, r < 2. Claim that inequality

(2.7)
∥∥f(x)− 2−2nf(2nx)

∥∥ ≤ cr(1− 2(r−2)n) ‖x‖r ,

holds for everyx ∈ X, n ∈ N0 with p = 2, 3, 4, 5, . . . , andcr = c
22−r−1

, r<2 .
For n = 0, it is trivial. Note that (2.6) yields (2.7) forn = 1. Assume (2.7) is true and from
(2.6), with2n−1x on place ofx, we get∥∥f(x)− 2−2nf(2nx)

∥∥
≤

∥∥f(x)− 2−2(n−1)f(2n−1x)
∥∥+

∥∥2−2(n−1)f(2n−1x)− 2−2nf(2nx)
∥∥

≤ cr

{(
1− 2(r−2)(n−1)

)
+ 2−2(n−1)

(
1− 2r−2

)
2r(n−1)

}
‖x‖r = cr

(
1− 2(r−2)n

)
‖x‖r .

Similarly from (1.9), withx1 = x2 = x
2
, xj = 0 (j = 3, 4, . . . , p), we get

fk

(
x
2
, x

2
, 0
)

=

(
p− 2
k − 1

)
f (0) +

(
p− 2

k

)
f (x), andRk

(
x
2
, x

2
, 0
)

=

(
p− 2

k

)
‖x‖r for

k = 0, 1, 2, . . . , p− 1. Therefore from these and (1.4), (1.9), and (2.4) we obtain that

Kr = Kr

(x

2
,
x

2
, 0, . . . , 0

)
=

p−1∑
k=0

Rk

(x

2
,
x

2
, 0, . . . , 0

)
= 2p−2 ‖x‖r ,
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6 JOHN M ICHAEL RASSIAS

and ∥∥∥∥∥
p−1∑
k=0

(
p− 2
k − 1

)
f(0) +

p−1∑
k=0

(
p− 2

k

)
f(x)− 2p−1

(
2f(2−1x) + (p− 2)f(0)

)∥∥∥∥∥
≤ cKr,

or ∥∥2p−2f(x)− 2pf(2−1x)
∥∥ ≤ c2p−2 ‖x‖r ,

or

(2.8)
∥∥f(x)− 22f(2−1x)

∥∥ ≤ c ‖x‖r = cr

(
1− 22−r

)
‖x‖r ,

wherecr = c
1−22−r , r > 2. Claim that inequality

(2.9)
∥∥f(x)− 22nf(2−nx)

∥∥ ≤ cr(1− 2(2−r)n) ‖x‖r ,

holds for everyx ∈ X,n ∈ N0 with p = 2, 3, 4, 5, . . . , andcr = c
1−22−r , r>2.

For n = 0, it is trivial. Note that (2.8) yields (2.9) forn = 1. Assume (2.9) is true and from
(2.8), with2−(n−1)x on place ofx, we obtain :∥∥f(x)− 22nf(2−nx)

∥∥
≤

∥∥f(x)− 22(n−1)f(2−(n−1)x)
∥∥+

∥∥22(n−1)f(2−(n−1)x)− 22nf(2−nx)
∥∥

≤ cr

{(
1− 2(2−r)(n−1)

)
+ 22(n−1)

(
1− 22−r

)
2−r(n−1)

}
‖x‖r

= cr

(
1− 2(2−r)n

)
‖x‖r , r > 2.

Claim now that the sequence{Fn (x)} : Fn (x) = 2−2nf(2nx), converges ifr<2. To do this
it suffices to prove that{Fn (x)} is a Cauchy sequence. Inequality (2.7) is involved. In fact, if
i>j>0 andh1 := 2jx, we have

‖Fi (x)− Fj (x)‖ =
∥∥2−2if(2ix)− 2−2jf(2jx)

∥∥ = 2−2j
∥∥2−2(i−j)f(2i−jh1)− f(h1)

∥∥
≤ 2−2jcr

(
1− 2(i−j)(r−2)

)
‖h1‖r = 2−2jcr

(
1− 2(i−j)(r−2)

)
2jr ‖x‖r

= 2j(r−2)cr

(
1− 2i(r−2)

)
‖x‖r

< cr2
(r−2)j ‖x‖r → 0, asj →∞, r<2.

Similarly claim that the sequence{Fn (x)} : Fn (x) = 22nf(2−nx) converges ifr>2. To do this
it suffices to prove that{Fn (x)} is a Cauchy sequence. Inequality (2.9) is involved. In fact, if
i>j>0 andh2 := 2−jx, we get

‖Fi (x)− Fj (x)‖ =
∥∥22if(2−ix)− 22jf(2−jx)

∥∥ = 22j
∥∥22(i−j)f(2−(i−j)h2)− f(h2)

∥∥
≤ 22jcr

(
1− 2(i−j)(2−r)

)
‖h2‖r = 22jcr

(
1− 2(i−j)(2−r)

)
2−jr ‖x‖r

= 2j(2−r)cr

(
1− 2i(2−r)

)
‖x‖r

< 2j(2−r)cr ‖x‖r −→
j→∞

0.

Also claim that formula (2.1), withr<2, yields a quadratic type mappingQ : X → Y .
Note that from (1.4), (2.1) withr<2 and the fact thatlim

n→∞
2−2nfk(2

nx1, 2
nx2, . . . , 2

nxp) =

Qk(x1, x2, . . . , xp), as well asKr (2nx1, 2
nx2, . . . , 2

nxp) =
p−1∑
k=0

Rk (2nx1, 2
nx2, . . . , 2

nxp) =
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2nrKr (x1, x2, . . . , xp) we get∥∥∥∥∥
p−1∑
k=0

lim
n→∞

2−2nfk(2
nx1, 2

nx2, . . . , 2
nxp)− 2p−1

p∑
i=1

lim
n→∞

2−2nf(2nxi)

∥∥∥∥∥
=

∥∥∥∥∥
p−1∑
k=0

Qk(x1, x2, . . . , xp)− 2p−1

p∑
i=1

Q(xi)

∥∥∥∥∥ ≤ c lim
n→∞

2−2nKr (2nx1, 2
nx2, . . . , 2

nxp)

=
(

lim
n→∞

2n(r−2)
)

cKr (x1, x2, . . . , xp) = 0,

which is (1.3). Similarly claim that the formula (2.1), withr>2, yields a quadratic type mapping
Q : X → Y . Note that from (1.4), (2.1) withr>2 and the fact that

lim
n→∞

22nfk(2
−nx1, 2

−nx2, . . . , 2
−nxp) = Qk(x1, x2, . . . , xp)

as well as

Kr

(
2−nx1, 2

−nx2, . . . , 2
−nxp

)
=

p−1∑
k=0

Rk

(
2−nx1, 2

−nx2, . . . , 2
−nxp

)
= 2−nrKr (x1, x2, . . . , xp)

we obtain∥∥∥∥∥
p−1∑
k=0

lim
n→∞

22nfk(2
−nx1, 2

−nx2, . . . , 2
−nxp)− 2p−1

p∑
i=1

lim
n→∞

22nf(2−nxi)

∥∥∥∥∥
=

∥∥∥∥∥
p−1∑
k=0

Qk(x1, x2, . . . , xp)− 2p−1

p∑
i=1

Q(xi)

∥∥∥∥∥ ≤ c lim
n→∞

22nKr

(
2−nx1, 2

−nx2, . . . , 2
−nxp

)
=

(
lim

n→∞
2n(2−r)

)
cKr (x1, x2, . . . , xp) = 0,

which is (1.3). It is now clear from (2.7) and (2.9) withn → ∞, and the formula (2.1) that
inequality (2.2) holds inX. This completesthe existence proofof our Theorem 2.1. It remains
to provethe uniquenessfor this Theorem.Let Q′ : X → Y be another quadratic type mapping
satisfying (2.2). Then we have to prove thatQ′ = Q. In fact, remember that bothQ andQ′

satisfy (1.7) forr<2. Then from the triangle inequality and (2.2) withr<2 one gets that

‖Q(x)−Q′(x)‖ =
∥∥2−2nQ (2nx)− 2−2nQ′ (2nx)

∥∥
≤ 2−2n {‖Q(2nx)− f(2nx)‖+ ‖Q′ (2nx)− f (2nx)‖}
≤ 2−2n · 2 · 2nrcr ‖x‖r = 2 · 2n(r−2) · cr · ‖x‖r −→

n→∞
0,

for everyx ∈ X andn ∈ N0. Thus

(2.10) Q(x) = Q′(x)

for everyx ∈ X andr<2. Similarly bothQ andQ′ satisfy (1.11), as well. Then from the
triangle inequality and (2.2) withr>2 one obtains that

‖Q(x)−Q′(x)‖ =
∥∥22nQ

(
2−nx

)
− 22nQ′ (2−nx

)∥∥
≤ 22n

{∥∥Q(2−nx)− f(2−nx)
∥∥+

∥∥Q′ (2−nx
)
− f

(
2−nx

)∥∥}
≤ 22n · 2 · 2−nrcr ‖x‖r = 2 · 2n(2−r) · cr · ‖x‖r −→

n→∞
0,
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for everyx ∈ X andn ∈ N0. Thus (2.10) holds for everyx ∈ X andr>2. This completes the
proof of the uniquenessof our theorem and thus ofthe stabilityfor the quadratic type equation
(1.1) in several variablesx1, x2, . . . , xp ∈ X.

Corollary 2.2. Let X andY be normed linear spaces. Assume thatY is complete. Assume in
addition thatf : X → Y is a mapping for which there exists a constantc ≥ 0 (independent of
x1, x2 ∈ X) andr ∈ R− {2}, such that

‖f (x1 + x2) + f (x1 − x2)− 2 (f (x1) + f (x2))‖ ≤ c (‖x1 + x2‖r + ‖x1 − x2‖r) .

Then the limit of the formula (2.1) exists andQ : X → Y is the unique quadratic type mapping,
such that (2.2) holds.
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