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ABSTRACT. In 1964  S. M. Ulam [6]  proposed the general Ulam stability problem: " When 
is it true that by slightly changing the hypotheses of a theorem one can still assert that the 
thesis of the theorem remains true or approximately true ?" Almost all proofs on the Ulam 
stability of additive functional equations have employed the well-known Hyers (direct) method 
established by D. H. Hyers [1]  in 1941. On the other hand, V. Radu [2] in 2003 noticed that a 
fixed point alternative method is very important for the solution of the Ulam problem.  In 2003-
2004  M. J. Rassias and the author  [3-5] of this paper investigated the Ulam stability of Jensen 
and Jensen type mappings by applying the Hyers method. In this paper we establish the Ulam 
stability of Jensen and  Jensen type mappings as well as additive mappings of two forms, via 
an alternative contraction principle. This kind of stability problems can be applied in 
stochastic analysis, actuarial and financial mathematics.  
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1. INTRODUCTION 

 

 In 1940 and 1964 S. M. Ulam [6]  proposed the general Ulam stability problem: 
 
 " When is it true that by slightly changing the hypotheses of a theorem one can  
  still assert that the thesis of the theorem remains true or approximately true ?" 
 
 Almost all proofs on the Ulam stability of additive functional equations have 

employed the well-known Hyers (direct) method established by D. H. Hyers [1]  in 
1941. On the other hand, V. Radu [2] in 2003 noticed that a fixed point alternative 
method is very important for the solution of the Ulam problem. In 2003-2004  M. J. 
Rassias and the author [3-5] of this paper investigated the Ulam stability of Jensen and 
Jensen type mappings by applying the Hyers method. In this paper we establish the 
Ulam stability of Jensen and  Jensen type mappings as well as additive mappings of two 
forms, via an alternative contraction principle. This kind of stability problems can be 
applied in stochastic analysis, actuarial and financial mathematics.  

 

Let X and Y be real linear spaces and  the set of natural numbers.. 

Definition 1.1. A mapping A : X → Y is called additive of the first form if A satisfies the 

functional equation  

(1.1)                                        ( ) ( ) ( )12121 2 xAxxAxxA =−++  

for all x1, x2 ∈ X   with initial condition  

(1.2)                                                        A(0) = 0 .                         

     We note that (1.1) is equivalent to the Jensen equation  

(1.3)                                            ( ) ( )yAxAyx2A +=⎟
⎠
⎞

⎜
⎝
⎛ +

2
                                            

for x = x1 + x2, y = x1 – x2. 

Definition 1.2. A mapping A : X → Y is called additive of the second form if A satisfies 

the functional equation  

(1.4)                                        ( ) ( ) ( )22121 2 xAxxAxxA =−−+  

for all x1, x2 ∈ X .  

    We note that (1.4) is equivalent to the Jensen type equation  
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(1.5)                                            ( ) ( )yAxAyx2A −=⎟
⎠
⎞

⎜
⎝
⎛ −

2
                                            

for x = x1 + x2, y = x1 – x2. 

Definition 1.3. A mapping f : X → Y is called approximately odd if f satisfies the 

functional inequality  

(1.6)                                                  ( ) ( ) θ≤+−  xfxf  

for some fixed  and for all x ∈ X. 0≥θ

     We note that if ( ) ( )xflimxA nn

n
22−

∞→
= , then from (1.6) one gets that  

                      ( ) ( ) ( ) ( ) 022220 =≤+−=+−≤ −

∞→

−

∞→
θn

n

nnn

n
lim xfxflim xAxA  , or 

                                                           ( ) ( )xAxA −=−  , for all x ∈ X. 

 

Banach Contraction Principle 1.1 ([2]). If (X, d) is a complete metric space and J:X→X 

a mapping, such that ( ) ( )y,xd LJy,Jxd ≤  , for all x, y ∈ X and a Lipschitz constant 

L‹1,then J has one, and only one, fixed point ( ) *** JxxJx == , such that for 

any starting point  x ∈ X, as well as 

*n

n
xxJlim =

∞→

( ) ( )*n*n x,xd Lx,xJd ≤ , for all and x ∈ X ; 0n ≥

( ) ( )xJ,xJd 
L

x,xJd nn*n 1

1
1 +

−
≤ , for all and x ∈ X ; and 0≥n ( ) ( )Jx,xd 

L
x,xd *

−
≤

1
1 , 

for all x ∈ X. 

 

We note that  ( ) ( ) ( )*** x,xd LJx,Jxdx,Jxd ≤= . Thus 

( ) ( ) ( ) ( ) ( ) ( )****** x,xd LJx,Jxd LJx J,Jx JdxJ,xJdJx,xJdx,xJd 22222 ≤≤=== . 

Thus by induction on  we get  n∈ ( ) ( )*n*n x,xd Lx,xJd ≤ . 

Alternative Contraction Principle 1.2 ([2]). If (X, d) is a complete metric space and J: 

X → X a strictly contractive mapping ( that is : ( ) ( )y,xd LJy,Jxd ≤  , for all x, y ∈ X and 

a Lipschitz constant L (‹1) ), then either ( ) ∞=+ xJ,xJd nn 1 , for all , or there exists  0n ≥
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n0 ∈ N = {1, 2, …} such that ( )xJ,xJd nn 1+ ‹∞ , for all  ; the sequence {J0nn ≥
nx} is 

convergent to a fixed point  of  J ; is the unique fixed point of J in the set  *y *y

( ){ }∞〈∈=   y,xJd ,Xy Y n0 ; and ( ) ( Jy,yd 
L

y,yd *

−
≤

1
1 ) ,  for all y ∈ Y. 

   

2. STABILITY OF THE JENSEN AND JENSEN TYPE EQUATION 

 

  Throughout this paper, let E be a linear space and F a Banach space. Besides denote 

( )* 0  ,fδ δ= + and  ** * (0)fδ δ= +    for some fixed and f : E → F. 0≥δ

  We prove  the following Theorem 2.1 on Jensen mappings via the alternative 

contraction principle. 

  Theorem 2.1. If  f : E→F satisfies the approximately  Jensen inequality 

(2.1)                                            ( ) ( )  δ x-fxfxxf ≤−⎟
⎠
⎞

⎜
⎝
⎛ +

21
21

2
2  

for some fixed  δ ≥ 0 and all x1, x2 ∈ E, then there exists a unique Jensen mapping j: E→F 

satisfying the inequality  

(2.2)              ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ 〈==≤− 1  

2
1L  for  

L-1
L δ  xjxf ** δ , 

 for all x ∈ E. 

Proof. Let X = { g : E→F }, and introduce the metric  

(2.3)               
( ) ( ) ( ) ( ){ }
( )

*, inf  0, ,   ,  

     

d g h g x h x x Eε δ

ε

+= ∈ = ∞ − ≤ ∀ ∈

〈

ε
 

for all g, h ∈ X. 

It is clear that (X, d) is complete.  

     Consider the linear mapping J:X→X, such that ( ) ( )xgxJg 22 1−= ; thus, 

( ) ( )xgxgJ nnn 22−= . 

Replacing 2x on x in the above inequality ( ) ( ) εδ* xhxg ≤−  
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of  the metric (2.3), and then dividing by 2, one gets 

( ) ( ) ( ) ( ) εδ* xhxg xJhxJg 11 2222 −− ≤−=− , or ( ) εLJh ,Jgd ≤  (for L=1/2), 

 yielding     , ( ) ( h ,gd LJh ,Jgd ≤ )
 for all g, h ∈ X. Thus  J:X→X is strictly contractive with Lipschitz constant L=1/2.  

     Setting x1 = 2x, x2 = 0 in (2.1) and employing the triangle inequality, we obtain  

( ) ( ) ( )  δ -fxfxf ≤− 022 , or 

( ) ( ) ( ) ( ) ( )( ) L  f xfxf xJfxf ** δδδ ==+≤−=− − 22022 1 . 

Thus . ( ) LJf ,fd ≤

   Placing x1 = x, x2 = -x in (2.1) we get 

( ) ( ) ( )  δ x-fxff ≤−−02 , or 

( ) ( ) ( ) ** 2 0  f x f x fδ δ θ− + ≤ + = =  

 for all x ∈ E. 

Employing the alternative contraction principle 1.2, one establishes the existence of a 

Jensen mapping  j : X → X  such that ( ) ( )xjxj 22 1−=  ; that is, j : X → X  is a fixed point 

of  J : X → X  ,such that ( ) ( ) ( )12 2Jj x j x j x−= =  in ( ){ }  g,fd,Xg Y 〈∞∈= .         

Thus j: X → X  is the unique mapping satisfying ( ) ( )xjxj 22 1−=  and the inequality 

( ) ( ) ( )1==≤− εδεδ   if     xjxf ** , 

for all x ∈ E. 

Besides 

( ) ( ) 020 →=≤≤ − εnnn j,fdLj,fJd , as ∞→n , or ( ) 0=
∞→

j,fJdlim n

n
. 

This implies 

(2.4)                              ( ) ( ) ( )xjxflimxfJlim nn

n

n

n
== −

∞→∞→
22  , 

for all x ∈ E. 

     We note that ( ) ( xfxJf 22 1−= )  yields 

( ) ( )( ) ( )( ) ( )( ) ( )xfxfxfJxJfJxfJ 221112 22222222 −−−− ==== . 
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 Thus by induction on , one gets n∈ ( ) ( )2 2 ,   n n nJ f x f x n−= ∀ ∈ . 

Therefore from triangle inequality, we find 

( ) ( ) ( ) ( )( )
( ) ( )

 2 2

 

n nf x J f x f x f x

f x Jf x

−− = −

≤ −

  n

 

( ) ( ) ( ) ( )
( )( )

2 1

*
11

...  

1 2 ... 2
2

n n

n

Jf x J f x J f x J f x

δ

−

− −−

+ − + + −

≤ + + +
 

( ) ∞→→−= − n  as  ,*n* δδ 21 . 

Therefore 

( ) ( ) ( ) ( ) ( ) ( ) xjxfJ xfJxf xjxf nn −+−≤− ∞→=+→ n   ,** δδ 0 , 

satisfying the inequality (2.2). Also 

( ) ( ) 1
11

1
=

−
≤

−
≤

L
Ldf,fd 

L
j,fd . 

Replacing ( )21 22 x,x nn  on (x1, x2) in (2.1), and multiplying by 2-n, we get from (2.4) by 

letting , that  ∞→n

( ) ( ) ∞→→≤−⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

⋅ −−−− n  as ,δ  xf-xfxxf nnnnnnn 022222
2

222 21
21 ,  

or that j : X → X is a Jensen mapping, satisfying the Jensen equation   

(2.5)                                 ( ) ( )21
21

2
2 xjxjxxj +=⎟

⎠
⎞

⎜
⎝
⎛ + , 

for all x1, x2 ∈ E, completing the proof of Theorem 2.1. 

 Corollary 2.1. If  f : E→F satisfies the approximately  Jensen inequality (2.1), then there 

exists a unique additive mapping j : E→F satisfying the inequality (2.2). 

Proof.  Following the proof of  Theorem 2.1 we get that there exists a unique Jensen 

mapping j : E → F satisfying the Jensen equation (2.5).  

However, if we replace ( )2
1

1
1 22 x,x nn ++  on (x1, x2) in (2.1), and multiply by 2-(n+1), we get 

from (2.4) by letting , that  ∞→n
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( ) ( ) ( ) ( ) ( ) xf-xfxxf nnnnnn
2

11
1

112111 2222
2

222 ++−++−++− −⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

⋅  

= ( )( ) ( ) ( ) ( ) ( ) xf-xfxxf nnnnnn
2

11
1

11
21 222222 ++−++−− −+  

( ) ∞→→≤ +− n  as ,δ n 02 1 , or 

( ) ( ) ( ) 00 2121 ≤−−+≤  xjxjxxj , or 

( ) ( ) ( )2121 xjxjxxj +=+  ; 

 that is, a unique additive mapping  j : E → F , satisfying (2.2), and thus the proof of this 

Corollary 2.1 is complete. 

    Claim that  a Jensen mapping j : E → F with ( ) 00 =j    is additive.  

 In fact, we take x1 = 2x, x2 = 0 in (2.5). Then  

                                   ( ) ( ) ( ) ( )xjjxjxj 2022 =+= , or 

(2.6)                                             ( ) ( )xjxj 22 = ,  

for all x ∈ X. Thus replacing  on (x( 21 22 x,x ) 1, x2) in (2.5) we find from (2.6) that 

                                            ( ) ( ) ( )2121 xjxjxxj +=+ , 

for all x1, x2 ∈ X. Therefore j : E → F  is additive. 

 

   Similarly we establish the following Theorem 2.2. 

 

Theorem 2.2. If  f : E→F satisfies the approximately Jensen type  inequality 

(2.7)                                 1 2
1 22 ( ) ( ) ( )

2
x xf f x f x δ−

− + ≤  

for some fixed  δ ≥ 0 and all x1, x2 ∈ E, 

 then there exists a unique Jensen type mapping       

   j: E→F  satisfying the inequality  (2.2). 

Corollary 2.2. If  f : E→F satisfies the approximately Jensen type  inequality (2.7), then 

there exists a unique additive mapping  j: E→F  satisfying the inequality  (2.2). 
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3. STABILITY OF THE ADDITIVE EQUATION (1.1) OF THE FIRST FORM 

 

Theorem 3.1. If  f : E→F satisfies the approximately additive inequality of the first form  

(3.1)                                            ( ) ( ) ( )  δ xfxxfxx f ≤−−++ 12121 2  

for some fixed  δ ≥ 0 and all x1, x2 ∈ E, then there exists a unique additive mapping         

j: E→F of the first form satisfying the inequality  

(3.2)                ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ==≤−  

2
1L  for  

L-1
L δ  xjxf ** δ , 

 for all x ∈ E. 

Proof.  In fact, we set x1 = x2 = x in (3.1) and ( ) ( )xfxJf 22 1−= , one gets that  

(3.3)                 ( ) ( ) ( ) ( ) L xfxf xJfxf *
*

δδ
=≤−=− −

2
22 1 , 

for all x ∈ E. Replacing ( )21 22 x,x nn  on (x1, x2) in (3.1), dividing by 2n, and considering 

the formula ( ) ( )xflimxj nn

n
22−

∞→
= , we get the following additive equation of the first form 

(3.4)                             ( ) ( ) ( )12121 2 xjxxjxxj =−++  , 

for all x1, x2 ∈ E. Thus j: E→F is additive of the first form.The rest of the proof is omitted 

as similar to the proof of the afore-mentioned Theorem 2.1.   

 Corollary 3.1. If  f : E→F satisfies the condition f(0) = 0 and the approximately additive 

inequality of the  first form (3.1), then there exists a unique additive mapping j : E→F 

satisfying the condition j(0) = 0 and the inequality. 

(3.5)                                ( ) ( ) δ  xjxf ≤−  

for all x ∈ E and some fixed  δ ≥ 0. 

Proof. Following the proof of  Theorem 3.1. we get that there exists a unique additive 

mapping  j : E→F of the first form satisfying the equation (3.4) and the inequality (3.5). 

Besides j(0) = 0  because f(0) = 0.  

Claim that an additive mapping j : E→F of the first form with j(0) = 0 is additive. 

In fact, setting x1 = 0,  x2 = x in the equation (3.4) and assuming j(0) = 0, we get that         

j : E→F is odd; that is, 
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(3.6)                                           ( ) ( )xjxj −=− ,  

for all x ∈ X.  Besides replacing ( )12 x,x  on (x1, x2) in (3.4), one obtains from (3.6) that 

(3.7)                                   ( ) ( ) ( )22121 2 xjxxjxxj =−−+  

for all x1, x2 ∈ E. Thus adding (3.4) and (3.7), we find  

(3.8)                                            ( ) ( ) ( )2121 xjxjxxj +=+  

for all x1, x2 ∈ E, completing the proof of the additivity of j : E → F . 

 

4. STABILITY OF THE ADDITIVE EQUATION (1.4) OF THE SECOND FORM 

 

Theorem 4.1.If f: E→F satisfies the approximately additive inequality of the second form  

(4.1)                              ( ) ( ) ( )  δ xfxxfxx f ≤−−−+ 22121 2  

for some fixed  δ ≥ 0 and all x1, x2 ∈ E, then there exists a unique additive mapping         

j: E→F of the second form satisfying the inequality (3.2). 

Proof.  In fact, we set x1 = x2 = 0 in (4.1) yielding 

(4.2)                                                 ( )
2

0 δ
≤ f  

for some fixed  δ ≥ 0.  

Besides placing (x, x) on (x1, x2) in (4.1) we find from (4.2), the triangle inequality and 

 that  ( ) ( )xfxJf 22 1−=

( ) ( ) ( )  δ xffx f ≤−− 202 , 

or (3.3) holds. Replacing ( )21 22 x,x nn  on (x1, x2) in (4.1), dividing by 2n,  

and considering ( ) ( )xflimxj nn

n
22−

∞→
= , we get the additive equation of the second form: 

(4.3)                             ( ) ( ) ( )22121 2 xjxxjxxj =−−+  , 

for all x1, x2 ∈ E. Thus j: E→F is additive of the second form. We note that if we set x1 = 

x2 = 0 in (4.3), one finds that j(0) = 0.The rest of the proof is omitted as similar to the 

proof of the above-mentioned Theorem 2.1.  
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 Corollary 4.1. If  f : E→F satisfies the approximately additive inequality of the second 

form (4.1), then there exists a unique additive mapping j: E→F satisfying the inequality 

(3.2). 

Proof.  Following the proof of the Theorem 4.1 we get that there exists a unique additive 

mapping  j: E→F of the second form satisfying the equation (4.3) and the inequality 

(3.2). 

Claim that an additive mapping j : E→F of the second form is additive. 

    In fact, setting x1 = 0,  x2 = x in the equation (4.3), we get (3.6).  

Besides replacing (x2, x1) on (x1, x2) in (4.3), one obtains (3.4) from (3.6).  Thus adding 

(3.4) and (4.3), we find (3.8), completing the proof of the additivity of  j: E→F. 
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