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Abstract             

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear 

mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for 

additive mappings. In 1982-2004 we established the Hyers-Ulam stability for the 

Ulam problem of linear and nonlinear mappings. In 1983 F. Skof was the first author 

to solve the Ulam problem for additive mappings on a restricted domain. In 1998 S.-

M. Jung and in 2002-2004  the  authors of this paper investigated the Hyers-Ulam 

stability of additive and quadratic mappings on restricted domains. In this paper we 

improve our bounds and thus our results obtained ,in 2003 for Jensen and Jensen type 

mappings and  establish new theorems about the Ulam stability of additive mappings 

of the first (and the second) form on restricted domains. Finally, we apply our recent 

results to the asymptotic behavior of functional equations of these types.  
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1    Introduction 
In 1940 and in 1964  S. M. Ulam [26] proposed the general Ulam stability problem:  

"When is it true that by slightly changing the hypotheses of a theorem   one can 

still assert that the thesis of the theorem remains true or approximately true ?" 

In 1941 D.H. Hyers [13] solved this problem for linear mappings. In 1951 D.G. Bourgin 

[3] was the second author to treat the Ulam problem for additive mappings. In 1978, 

according to P.M. Gruber [12], this kind of stability problems is of particular interest in 

probability theory and in the case of functional equations of different types. In 1978 

Th.M. Rassias [24] employed Hyers’ ideas to new linear mappings. In 1980 and in 

1987, I. Fenyö [7, 8] established the stability of the Ulam problem for quadratic and 

other mappings. In 1987 Z. Gajda and R. Ger [10] showed that one can get analogous 

stability results for subadditive multifunctions. Other interesting stability results have 

been achieved also by the following authors : J. Aczél [1], C. Borelli and G.L. Forti [2, 

9], P.W. Cholewa [4], St. Czerwik [5], and H. Drljevic [6], and Pl. Kannappan [15]. In 

1982-2004  J.M. Rassias ([16-21],[23])  and  in 2003 the authors [22]  solved the above 

Ulam problem for different mappings. In 1999 P. Gavruta [11] answered a question of 

ours [18] concerning the stability of the Cauchy equation. In 1983 F. Skof [25] was the 

first author to solve the Ulam problem for additive mappings on a restricted domain. In 

1998 S.-M. Jung [14] and  in 2002-2003  the authors  [21,22] investigated the Hyers-

Ulam stability for additive and quadratic mappings on restricted domains. In this paper 

we improve our bounds and thus our results obtained, in 2003 for Jensen and Jensen type 

mappings  and  establish new theorems about the Ulam stability of additive mappings of the 

first (and the second) form  on restricted domains. Finally, we apply our recent results to the 

asymptotic behavior of functional equations of these types.    

   Throughout this paper, let X be a real normed space and Y be a real Banach space in the 

case of functional inequalities, as well as let X and Y be real linear spaces for functional 

equations. 

   Definition 1.1. A mapping A : X→ Y is called additive of the  first form if A satisfies 

the functional equation  

                                     A(x1 + x2) + A(x1 - x2) =  2A(x1)                                                 (1.1) 

for all x1, x2 ∈ X. We note that (1.1) is equivalent to the Jensen equation 
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for x = x1 + x2, y = x1 - x2.  A mapping A : X→ Y is called  a Jensen mapping if  A  satisfies  

functional equation  (1.1a) (or (1.1b) ). 

   Definition 1.2. A mapping A : X→ Y is called additive of the  second form if A 

satisfies the functional equation  

                                              A(x1 + x2) - A(x1 - x2) =  2A(x2)                                          (1.2) 

for all x1, x2 ∈ X. We note that (1.2) is equivalent to the Jensen type equation 
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⎛ −
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] ,                                           (1.2a) 

or 

2 ( ) ( ) ( )
2

x yA A x A y−
= −                                            (1.2b) 

for x = x1 + x2, y = x1 - x2. A mapping A : X→ Y is called a  Jensen type mapping if  A  

satisfies  functional equation  (1.2a) (or (1.2b) ). 

   Definition 1.3. A mapping f : X→ Y is called approximately odd if f satisfies the 

functional inequality  

                                                          ( ) ( ) θxfxf ≤−+                                                  (1.3) 

for some fixed θ ≥ 0 and for all x ∈ X. 

 

In this section we state Theorem 1.1  which was proved by the first author  of this paper  

[19], in 1994.  

    Theorem 1.1. If a mapping f : X→ Y satisfies the  inequalities 

( ) ( ) ( ) δ≤−−++  2 12121 xfxxfxxf  ,                                                              

( ) 0 0 δ≤f  
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for some fixed δ, δ0 ≥ 0 and  all x1, x2 ∈ X, then there exists a unique additive mapping A : 

X→ Y of the  first form which satisfies the inequality 

                                                      ( ) ( ) 0δδ +≤− xAxf                                                    

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X 

then A(tx) = tA(x) for all x ∈ X and t ∈ .  

   This last assertion holds according to the work of the first author [16], in 1982. 

   Therefore it is obvious that the following stability Theorem 1.2 holds for additive 

mappings of the first form, which is sharper than the above Theorem 1.1.                                                    

    Theorem 1.2. If a mapping f : X→ Y satisfies the  inequalities 

                                          ( ) ( ) ( ) δ≤−−++  2 12121 xfxxfxxf  ,                              (1.4) 

                                                              ( ) 0 0 δ≤f                                                         (1.5) 

for some fixed δ ≥ 0,   δ0 ≥ 0   and  all x1, x2 ∈ X, then there exists a unique additive 

mapping A : X→ Y  of the  first  form , which satisfies the inequality 

 ( ) ( ) ||)0(|| fxAxf +≤− δ  ( 0 )δ δ≤ +                                                                 (1.6) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X 

then  A(tx) = tA(x) for all x ∈ X and t ∈ .  

2. Stability of the additive equation (1.1)  

of the first form  on  a restricted domain 
   We establish the following   new stability Theorem 2.1  for additive mappings of the first 

form on a  restricted domain, which is sharper than the  analogous Theorem 2 of the   

authors  [22], in 2003. 

   Theorem 2.1. Let d > 0 and δ ≥ 0 be fixed. If a mapping f : X→ Y satisfies the 

inequalities (1.4)  for all x1, x2 ∈ X, with dxx ≥+ 21 , and (1.5), then there exists a 

unique additive mapping A : X→ Y of the first form such that  

( ) ( ) ||)0(||
2
5 fxAxf +≤− δ 0

5(
2

)δ δ≤ +                                                                      (2.1) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X, 

then  A(tx) = tA(x)   for all x ∈ X and t ∈ . 
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 Proof. Assume 21 xx + < d. If x1 = x2 = 0, then we choose a t ∈ X with d t = . 

Otherwise, let us choose 
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Clearly, we see 

( ) dxxttxtx ≥+−≥++− 2121   2 , dtxx ≥+−  2 21 ,       
(2.2)

   

( ) dxx t txtx ≥+−≥+−++ 2121 2 , d t x ≥+1  

These inequalities (2.2) come from the corresponding substitutions attached between the 

right-hand sided parentheses of the following functional identity. 

     Therefore from (1.4), (2.2), the triangle inequality, and the functional identity 

( ) ( ) ( )[ ]12121 22 xfxxfxxf −−++  

= ( ) ( ) ( )[ ] 22 12121 txftxxfxxf −−−−++  (with x1–t on x1, and x2+t on x2 ) 

- ( ) ( ) ( )[ ]212121 222 xxftxxftxxf −−+−+−−  (with x1–x2 on x1, and 2t on x2) 

+ ( ) ( ) ( )[ ]txfxxftxxf +−+++− 12121 22  (with x1+t on x1 , and -x2+t on x2) 

+2 ( ) ( ) ( )[ ]111 2 xftxftxf −−++  (with x1 on x1 , and t on x2), 

we get 

                            ( ) ( ) ( ) δ
2
5 2 12121 ≤−−++ xfxxfxxf .                                         (2.3) 

     Applying now Theorem 1.2 and the above inequality (2.3) , one gets that there exists a 

unique additive mapping A : X→ Y of  the first form that satisfies the additive equation 

(1.1) and the inequality (2.1), such that  ( ) ( )xflimxA nn

n
22−

∞→
= . Our last assertion is trivial 

according to  the Theorem 1.2. 

 

 

We note that, if we define ( ){ }2 1  :2
212 ,i,dxXx,xS i =〈∈=  for some d > 0, then 

( ){ } 2
2

21
2

21 2  : S\XdxxXx,x ⊂≥+∈ . 
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 Corollary 2.1. If we assume that a mapping f : X→ Y satisfies the inequalities (1.4)-

(1.5) for some fixed  δ, δ0 ≥ 0 and for all (x1, x2) ∈ X 2\S2, then there exists a unique 

additive mapping A : X→ Y of the  first form, satisfying (2.1) for all x ∈ X. If, moreover, f 

is measurable or f(tx) is continuous in t for each fixed x ∈ X, then A(tx)=tA(x) for all x ∈ X 

and all  t ∈ . 

    Corollary 2.2. A mapping f : X→ Y is additive of the  first form, if and only if the 

asymptotic condition 

                          ( ) ( ) ( ) 0 2 12121 →−−++ xfxxfxxf , as ∞→+ 21 xx                  (2.4) 

holds. 

     However, in 1983 F. Skof [25] proved an asymptotic property for the additive mappings 

A : X→ Y, such that  

                                                    A(x1 + x2) = A(x1) + A(x2)                                              (2.5) 

holds for all x1, x2 ∈ X . 

3. Stability of the additive equation (1.2) of the second form 
   We establish the following   new stability Theorem 3.1  for additive mappings of the 

second form, which is sharper than the  analogous Theorem 3 of the authors [22], in 2003. 

   Theorem 3.1. If a mapping f : X→ Y satisfies the  inequality 

                                          ( ) ( ) ( ) δ≤−−−+  2 22121 xfxxfxxf                                  (3.1) 

for some δ ≥ 0 and for all x1, x2 ∈ X, then there exists a unique additive mapping A : X→ Y 

of the  second form, such that    ( )
2

 0 δ
≤f , which satisfies the inequality 

                                  ( ) ( ) ||)0(|| fxAxf +≤− δ ( )
2
3δ≤                                                (3.2) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X, 

then   A(tx) = tA(x) for all x ∈ X and t ∈ .  

    Proof. Replacing x1 = x2 = 0 in (3.1), we find  

                                                                  ( )
2

 0 δ
≤f .                                                     (3.3) 
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Thus, substituting x1 = x2 = x in (3.1), one gets 

                                  ( ) ( ) ( ) 21||))0(||( 22 11 −− −+≤− fxfxf δ ,                                   (3.4) 

for some δ ≥ 0 ,and   all x ∈ X. Therefore from (3.4) and the triangle inequality, we obtain 

                      ( ) ( ) ( ) 21||))0(||( 22 nnn fxfxf −− −+≤− δ ,                                            (3.5) 

for some δ ≥ 0 , any n ∈ N, and all x ∈ X.  

     We prove as in  [22] that  

                                                   A(x) = 2-nA(2nx)                                                              (3.6) 

holds for any n ∈ N, and all x ∈ X.  

   By (3.5), for n ≥ m > 0, and h = 2mx, we have 

( ) ( ) 2222 xfxf mmnn −− − <( 0  , as 2||))0(|| →⋅+ −mfδ ∞→m .                              (3.7) 

         Therefore we may apply a direct method to the definition of A, such that the formula 

                                                   ( ) ( )xflimxA nn

n
22−

∞→
=                                                    (3.8) 

holds for all x ∈ X  [16-19]. From this formula (3.8) and the inequality (3.1), it follows that  

A : X→ Y is an additive mapping of  the second form. According to the above inequality 

(3.5) and the formula (3.8), one gets that the inequality (3.2) holds. 

     Assume now that there is another additive mapping A´: X→ Y of  the second form 

which satisfies the equation (1.2), the formula (3.6) and the inequality (3.2). Therefore, as 

in [22],one gets 

                                                                   A(x) = A´(x)                                                    (3.9) 

for all x ∈ X, completing the proof of the first part of our Theorem 3.1. 

     The proof of the last assertion in our Theorem 3.1 is obvious according to the work 

[16], in 1982. 

4. Stability of the additive equation (1.2)  

of the second form  on  a restricted domain 
   
 We establish the following   new stability Theorem 4.1  for additive mappings of the 

second form on a  restricted domain, which is sharper than the  analogous Theorem 4 of the  

authors [22], in 2003.We note that from (1.3) and ( ) ( ) θ≤+− xfxf 22   ( from (1.3) with 
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  on x2 x  )  and  (3.4) as well as  ( ) ( ) ||)0(||22 fxfxf +≤−−− δ   ( from (3.4) with x−  

on x , after we have multiplied (3.4) by 2 ) and the triangle inequality one  gets 

 ( ) ( )xfxf +−2  ( ) ( )[ ]xfxf −−−−≤ 22  + ( ) ( )[ ]xfxf 22 −−  + ( ) ( )xfxf 22 +−  

or   ( ) ( )
( )1.3

( || (0) ||)
2

f x f x f θδ θ− + ≤ + + = . 

Therefore   θ=2(δ+||f(0)||)  and   thus the inequality 

            ( ) ( ) ||))0(||(2 fxfxf +≤+− δ ,                                                            (4.1a)                           

holds for some fixed  δ   and all x,0≥ ∈X.     

   Theorem 4.1. Let d>0 and δ , be fixed. If an approximately odd mapping f : X→Y 

satisfies  inequality (3.1) for all x

0≥

1, x2 ∈ X with 1 2 ,x x d+ ≥  and the inequality (4.1a)                          

for all x ∈ X with dx ≥ , then there exists a unique additive mapping A : X→ Y of the  

second form such that      ( )
2

 0 δ
≤f  and  

               ( ) ( ) )
2
23

(||)0(||59 δδ ≤+≤− fxAxf                                                         (4.1) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X, 

then  A(tx) = tA(x) for all x ∈ X and t ∈ . 

    Proof. Assume 21 xx + < d. If x1 = x2 = 0, then we choose a t ∈ X with dt =  .  

Otherwise, let us choose 

211
1

       1 xxif,x
x
dt ≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=  ; 212

2
       1 xxif,x

x
dt ≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= . 

We note that: 

dxt += 1   > d, if 21 xx ≥ ; dxt += 2   > d, if 21 xx ≤ . 

Clearly, we see 

( ) dxxttxtx ≥+−≥++− 2121   2 , ( ) dxxttxtx ≥+−≥−+− 2121   2 ,     

(4.2)
               

( ) dxxtxtx ≥+−≥+− 2121   22 ,  dxt ≥+ 2    

and  2xt −  ≥ 2xt −  = ( ) dxdx =−+ 22 , because  .2 dxt +=                                
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Therefore from (4.1a) , (3.1), (4.2), and the following functional identity 

( ) ( ) ( )22121 2 xfxxfxxf −−−+  

= ( ) ( ) ( )[ ] 22 22121 txftxxfxxf +−−−−+  (with x1–t on x1, and x2+t on x2 ) 

+ ( ) ( ) ( )[ ]txfxxftxxf −−−−−+ 22121 22  (with x1–t on x1, and x2-t on x2 ) 

- ( ) ( ) ( )[ ]22121 222 xftxxftxxf −−−−−+  (with x1–2t on x1, and x2 on x2 ) 

+2 ( ) ( ) ( )[ ]222 2 xfxtfxtf −−−+  (with t on x1, and x2 on x2) 

+2 ( ) ( )( )[ ]22 xtfxtf −−+− 2xt  (with  −  on x  ) , 

we get 

 ( ) ( ) ( ) 2 22121 xfxxfxxf −−−+ ≤9δ+4||f(0)||(≤11δ).                                               (4.3) 

              Applying the above Theorem 3.1 and the inequality (4.3), we prove that 

( ) ( ) (9 4 )(0) (0)

23
9 5 || (0) || ( ).

2

 f f

f

f x A x δ

δ δ

+ +≤

= + ≤

−
  

    Therefore there exists a unique additive mapping A : X→ Y of  the second form that 

satisfies the equation (1.2) and the inequality (4.1), completing the proof of this Theorem .    

It is obvious that our inequalities (4.1) and (4.3) are sharper than the corresponding 

inequalities of the authors [22], where the right-hand sides were equal to 

)
2
23(||)0(||59

2
33 δδδ ≤+≥ f   and   11δ 9 4 || (0) || ( 11f )δ δ≥ + ≤ ,   

 respectively, because of the condition  (0) / 2f δ≤  for a fixed 0δ ≥ .. 

 We note that if we define { }dxXxS <∈= :1  and ( ){ }2 1  :2
212 ,i,dxXx,xS i =〈∈=  

for some fixed d > 0, then 

{ } 1\ SX⊂dxXx 2: ≥∈    and      ( ){ } 2
2

21
2

21 2  : S\XdxxXx,x ⊂≥+∈ . 

   Corollary 4.1. If we assume that a mapping f : X→ Y satisfies the inequality (4.1) for 

some fixed  δ ≥ 0  and  for all (x1, x2) ∈ X 2\S2  and (4.1a)  for all  ,   then there 

exists a unique additive mapping    A : X→ Y of the  second form, satisfying (4.1) for all  

1\ SXx∈

x ∈ X. If, moreover,  f is measurable or f(tx) is continuous in t for each fixed x ∈ X, then  

A(tx) = tA(x)  for all x ∈ X and t ∈ . 
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Corollary 4.2. A mapping f : X→ Y is additive of  the second form,  if and only if the 

asymptotic conditions 

( ) ( ) 0→+− xfxf  and   ( ) ( ) ( ) 0 2 22121 →−−−+ xfxxfxxf ,                             (4.4) 

as      ∞→x  and ∞→+ 21 xx   hold, respectively. 

5. Stability of the Jensen equation (1.1b) 
   We establish the following   new stability Theorem 5.1  for Jensen mappings . 

     Theorem 5.1. If a mapping f : X→ Y satisfies the Jensen  inequality 

                                          ( ) ( )1 2
1 22

2
x xf f x f x  δ+⎛ ⎞ − −⎜ ⎟

⎝ ⎠
≤  ,                                 (5.1) 

 for some fixed δ ≥ 0,  and  all x1, x2 ∈ X, then there exists a unique Jensen mapping  

A : X→ Y  , satisfying  ( ) ( )xflimxA nn

n
22−

∞→
=    and   the inequality 

( ) ( ) ||)0(|| fxAxf +≤− δ                                                               (5.2) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X   

then  A(tx) = tA(x)  for all x ∈ X and t ∈ .  

    Proof. Substituting x1 = 2x  and  x2 = 0 in (5.1), one gets 

                                  ( ) ( ) ( ) 21||))0(||( 22 11 −− −+≤− fxfxf δ ,                                  (5.3) 

for some δ ≥ 0 ,and   all x ∈ X. Therefore from (5.3) and the triangle inequality, we obtain 

                      ( ) ( ) ( ) 21||))0(||( 22 nnn fxfxf −− −+≤− δ ,                                           (5.4) 

for some δ ≥ 0 , any n ∈ N, and all x ∈ X. The rest of the proof is omitted as it is similar to 

the proof  of the Theorem 3.1. 

6. Stability of the Jensen equation (1.1b)   

on a restricted domain 
   We establish the following   new stability Theorem 6.1  for Jensen  mappings on a  

restricted domain. 

   Theorem 6.1. Let d > 0 and δ ≥ 0 be fixed. If a mapping f : X→ Y satisfies the Jensen 

inequality  (5.1)  for all x1, x2 ∈ X, with dxx ≥+ 21 , and the additional inequalities 
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( ) ( ) 2 (0) ,f x f x fδ− + ≤ +                                                                               (6.1a) 

(2 ) 2 ( ) (0)f x f x fδ− ≤ +                                                                                  (6.1b) 

for all x∈X with x d≥ , then there exists a unique Jensen mapping A : X→ Y ,such that  

the inequality 

     ( ) ( ) 7 3 || (0) ||
2

f x A x fδ− ≤ +                                                                                 (6.1)  

holds  for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x 

∈ X, then  A(tx) = tA(x)   for all x ∈ X and t ∈ . 

     Proof. It is clear that the “approximate odd”  inequality (6.1a) holds, if we replace 

1 2,x x x x= = −  in  (5.1) and then apply the triangle inequality. We get (6.1b) from (5.3). 

From (1.1b), the triangle inequality, and the functional identity 

1 2
1 2

1 2
1 2 1 1 2 2

2 ( ) ( ) ( )
2

2 ( ) ( ) ( ) ( )
2

x xf f x f x

x xf f x t f x t with x t on x and x t on x

+
− −

+
= − − − + − +

 

2 2 2 1
1 [2 ( ) (2 ) (2 )] ( 2 2 )
2 2f x t f x f t with x on x and t on x+ + − −  

+ 1 1 1 1
1 [2 ( ) (2 ) ( 2 )] ( 2 2 )
2 2f x t f x f t with x on x and t on x− − − − −  

+ 1 1
1 [ (2 ) 2 ( )]
2

f x f x−  + 2 2
1 1[ (2 ) 2 ( )] [ ( 2 ) (2 )]
2 2

f x f x f t f t− + − +  

 we get 

                                1 2
1 2

72 ( ) ( ) ( ) 2 (0)
2 2

x xf f x f x fδ+
− − ≤ +    (6.2)                      

Applying now Theorem 5.1 and the above inequality (6.2) , one gets that there exists a 

unique Jensen mapping A : X→ Y that satisfies the Jensen  equation (1.1b) and the 

inequality (6.1), such that  ( ) ( )xflimxA nn

n
22−

∞→
=    with  ( ) ( )A x A x− = −  (from (6.1a) ).  

We note that, if we define   { }1 :S x X x d= ∈ <  and  ( ){ }2 1  :2
212 ,i,dxXx,xS i =〈∈=  

for some d > 0, then   

{ } 1: 2 \x X x d X S∈ ≥ ⊂   and  ( ){ } 2
2

21
2

21 2  : S\XdxxXx,x ⊂≥+∈ . 
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Corollary 6.1. If we assume that a mapping f : X→ Y satisfies the inequality (5.1) for 

some fixed  δ ≥ 0 and for all (x1, x2) ∈ X 2\S2   and (6.1a)-(6.1b) for all x∈X\S 1 , then there 

exists a unique Jensen  mapping A : X→ Y , satisfying (6.1) for all x ∈ X. If, moreover, f is 

measurable or f(tx) is continuous in t for each fixed x ∈ X, then A(tx)=tA(x)  for all x ∈ X 

and all  t ∈ . 

    Corollary 6.2. A mapping f : X→ Y is a Jensen mapping, if and only if the asymptotic 

conditions ( ) ( ) 0 (2 ) 2 ( ) 0 ,f x f x and f x f x as x− + → − → →∞  and    

( ) ( ) ( )1 2 1 22 ( ) / 2  0f x x f x f x+ − − → , as ∞→+ 21 xx    hold. 

7. Stability of the Jensen type equation (1.2b) 
   We establish the following   new stability Theorem 7.1  for Jensen type  mappings . 

     Theorem 7.1. If a mapping f : X→ Y satisfies the Jensen type   inequality 

                                          ( ) ( )1 2
1 22

2
x xf f x f x  δ−⎛ ⎞ − +⎜ ⎟

⎝ ⎠
≤  ,                                 (7.1) 

 for some fixed δ ≥ 0,  and  all x1, x2 ∈ X, then there exists a unique Jensen type  mapping  

A : X→ Y  , satisfying  ( ) ( )xflimxA nn

n
22−

∞→
=    and   the inequality 

( ) ( ) ||)0(|| fxAxf +≤− δ                                                               (7.2) 

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x ∈ X   

then  A(tx) = tA(x)  for all x ∈ X and t ∈ . 

  

    Proof. Substituting x1 = 2x  and  x2 = 0 in (7.1), one gets 

                                  ( ) ( ) ( ) 21||))0(||( 22 11 −− −+≤− fxfxf δ ,                                  (7.3) 

for some δ ≥ 0 ,and   all x ∈ X.  The rest of the proof is omitted as similar to the proof  of 

the Theorem 3.1 and Theorem 5.1. 

8. Stability of the Jensen type  equation (1.2b)   

on a restricted domain 
    



Asymptotic Behavior  of  Jensen  Type Equations                                         33 

 
We establish the following   new stability Theorem 8.1  for Jensen type   mappings on a  

restricted domain. 

   Theorem 8.1. Let d > 0 and δ ≥ 0 be fixed. If a mapping f : X→ Y satisfies the Jensen 

type inequality  (7.1)  for all x1, x2 ∈ X, with dxx ≥+ 21  , and the additional 

inequalities  

( ) ( ) ,f x f x δ− + ≤                                                                               (8.1a) 

(2 ) 2 ( ) (0)f x f x fδ− ≤ +                                                                                  (8.1b) 

for all x∈X with x d≥ , then there exists a unique Jensen type  mapping A : X→ Y ,such 

that  the inequalitiy 

      ( ) ( ) 5 2 || (0) |f x A x fδ− ≤ + |                                                                                 (8.1)  

holds  for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t for each fixed x 

∈ X, then  A(tx) = tA(x)   for all x ∈ X and t ∈ . 

     Proof .It is clear that the “approximate odd”  inequality (8.1a) holds for all x X∈ ,if 

we replace 1 2,x x x x= − =  in  (7.1) and then apply the triangle inequality. From (7.3) we 

get (8.1b). From (1.2b), the triangle inequality, and the functional identity 

 

1 2
1 2

1 2
1 2 1 1 2 2

2 ( ) ( ) ( )
2

2 ( ) ( ) ( ) ( )
2

x xf f x f x

x xf f x t f x t with x t on x and x t on x

−
− +

−
= − − + − − −

 

2 2 2 1
1 [2 ( ) ( 2 ) ( 2 )] ( 2 2 )
2 2f x t f x f t with x on x and t on x+ − + − − + − − −  

+ 1 1 1 1 2
1 [2 ( ) (2 ) (2 )] ( 2 2 )
2

f x t f x f t with x on x and t on x− − +  

+ 1 1
1 [ (2 ) 2 ( )]
2

f x f x−  - 2 2
1 1[ (2 ) 2 ( )] [ ( 2 ) (2 )]
2 2

f x f x f t f t− − − +  

-[ 2 2 2
1( ) ( )] [ ( 2 ) (2
2 2 )]f x t f x t f x f x− + + − + − +  

     we get 
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                                1 2
1 22 ( ) ( ) ( ) 5 (0) .

2
x x

f f x f x fδ
−

− + ≤ +    (8.2)                      

Applying now Theorem 7.1 and the above inequality (8.2), one gets that there exists a 

unique Jensen type  mapping A : X→ Y that satisfies the Jensen type equation (1.2b) and 

the inequality (8.1), such that  ( ) ( )xflimxA nn

n
22−

∞→
=    with    ( ) ( )A x A x− = − (from (8.1a)). 

We note that, if we define   { }1 :S x X x d= ∈ <  and  ( ){ }2 1  :2
212 ,i,dxXx,xS i =〈∈=  

for some d > 0, then   

{ } 1: 2 \x X x d X S∈ ≥ ⊂  and  ( ){ } 2
2

21
2

21 2  : S\XdxxXx,x ⊂≥+∈ . 

    Corollary 8.1. If we assume that a mapping f : X→ Y satisfies the inequality (7.1) for 

some fixed  δ ≥ 0 and for all (x1, x2) ∈ X 2\S2 and  (8.1a)-(8.1b) for all 1\x X S∈ , then there 

exists a unique Jensen type  mapping A : X→ Y , satisfying (8.1) for all x ∈ X. If, moreover, 

f is measurable or f(tx) is continuous in t for each fixed x ∈ X, then A(tx)=tA(x)  for all x ∈ 

X and all  t ∈ . 

    Corollary 8.2. A mapping f : X→ Y is a Jensen type mapping, if and only if the 

asymptotic conditions   ( ) ( ) 0 (2 ) 2 ( ) 0 ,f x f x and f x f x as x− + → − → →∞  

and     

   ( ) ( )1 2
1 22  0

2
x xf f x f x−⎛ ⎞ − + →⎜ ⎟

⎝ ⎠
,  as  ∞→+ 21 xx    , hold. 
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