Uniqueness of Quasi-Regular Solutions for a Bi-Parabolic Elliptic Bi-Hyperbolic Tricomi Problem

JOHN MICHAEL RASSIAS*
National University of Athens, Pedagogical Department E.E., Section of Mathematics and Informatics, 4, Agamemnonos str., Aghia Paraskevi, Athens 15342, Greece
Communicated by R.P. Gilbert

Dedicated to Erwin Kreyszig on the occasion of his 80th birthday
(Received 16 April 2001)

Abstract

The Tricomi equation $y u_{x x}+u_{y y}=0$ was established in 1923 by Tricomi who is the pioneer of parabolic elliptic and hyperbolic boundary value problems and related problems of variable type. In 1945 Frankl established a generalization of these problems for the well-known Chaplygin equation $K(y) u_{x x}+u_{y y}=0$ subject to the Frankl condition $1+2\left(K / K^{\prime}\right)^{\prime}>0, y<0$. In 1953 and 1955 Protter generalized these problems even further by improving the above Frankl condition. In 1977 we generalized these results in $R^{n}(n>2)$. In 1986 Kracht and Kreyszig discussed the Tricomi equation and transition problems. In 1993 Semerdjieva considered the hyperbolic equation $K_{1}(y) u_{x x}+\left(K_{2}(y) u_{y}\right)_{y}+r u=f$ for $\mathrm{y}<0$. In this paper we establish uniqueness of quasi-regular solutions for the Tricomi problem concerning the more general mixed type partial differential equation $K_{1}(y)\left(M_{2}(x) u_{x}\right)_{x}+M_{1}(x)\left(K_{2}(y) u_{y}\right)_{y}+r u=f$ which is parabolic on both lines $x=0 ; y=0$, elliptic in the first quadrant $x>0, y>0$ and hyperbolic in both quadrants $x<0, y>0 ; x>0, y<0$. In 1999 we proved existence of weak solutions for a particular Tricomi problem. These results are interesting in fluid mechanics.

Keywords: Quasi-regular solution; Tricomi equation; Chaplygin equation; Bi-parabolic equation; Bi-hyperbolic equation; Tricomi problem

1991 Mathematics Subject Classification: 35MO5

1. INTRODUCTION

In 1904 Chaplygin [11] noticed that the equation of a perfect gas was $K(y) u_{x x}+u_{y y}=0$. In 1923 Tricomi [17] initiated the work on boundary value problems for linear partial differential mixed type equations of second order and related equations of variable type. In 1945 Frankl [3] drew attention to the fact that the Tricomi problem was closely connected to the study of gas flow with nearly sonic speeds. In 1953 and 1955 Protter [7] generalized and improved the aforementioned results in the euclidean plane. In 1977

[^0]we [8] generalized these results in $R^{n}(n>2)$. In 1982 we [9] established a maximum principle of the Cauchy problem for hyperbolic equations in $R^{n+1}(n \geq 2)$. In 1983 we [10] solved the Tricomi problem with two parabolic lines of degeneracy and, in 1992, we [12] established the well-posedness of the Tricomi problem in euclidean regions. Interesting results for the Tricomi problem were achieved by Barantsev [1] in 1986, and Kracht and Kreyszig [4] in 1986, as well. Related information was reported by Fichera [2] in 1985, and Kreyszig [5,6] in 1989 and 1994. Our [11,14,15] work, in 1990 and 1999, was in analogous areas of mixed type equations. In 1993 Semerdjieva introduced the hyperbolic equation $K_{1}(y) u_{x x}+\left(K_{2}(y) u_{y}\right)_{y}+r u=f$ in the lower halfplane. In 1997 we [13] considered the more general case of the above hyperbolic equation, so that it was elliptic in the upper half-plane and parabolic on the line $y=0$. In this paper we consider the more general Tricomi problem with partial differential equation the new bi-parabolic elliptic bi-hyperbolic equation
\[

$$
\begin{equation*}
L u \equiv K_{1}(y)\left(M_{2}(x) u_{x}\right)_{x}+M_{1}(x)\left(K_{2}(y) u_{y}\right)_{y}+r(x, y) u=f(x, y), \tag{*}
\end{equation*}
$$

\]

which is parabolic on both segments $x=0,0<y \leq 1 ; y=0,0<x \leq 1$, elliptic in the euclidean region $G_{e}=\left\{(x, y) \in G\left(\subset R^{2}\right): x>0, y>0\right\}$ and hyperbolic in both euclidean regions $G_{h_{1}}=\left\{(x, y) \in G\left(\subset R^{2}\right): x>0, y<0\right\} ; G_{h_{2}}=\left\{(x, y) \in G\left(\subset R^{2}\right): x<0, y>0\right\}$, with G the mixed domain of (*). In 1999 we [15] proved existence of weak solutions for a particular Tricomi problem. Then we establish uniqueness of quasi-regular solutions [3,7,8,10-13] for the Tricomi problem, concerning the above mixed type Eq. $\left(^{*}\right)$. However, the question about the uniqueness of quasi-regular solutions and the existence of weak solutions for this general Tricomi problem in several variables is still open. These results are interesting in Aerodynamics and Hydrodynamics.

2. THE TRICOMI PROBLEM

Consider the bi-parabolic elliptic bi-hyperbolic equation (*) in a bounded simply-connected mixed domain G with a piecewise smooth boundary $\partial G=g_{1} \cup g_{2} \cup g_{3} \cup \gamma_{2} \cup \gamma_{3}$, where $f=f(x, y)$ is continuous in $G, r=r(x, y)$ is once-continuously differentiable in $G, K_{i}=K_{i}(y)(i=1,2)$ are once-continuously differentiable for $y \in\left[-k_{1}, k_{2}\right]$ with $-k_{1}=\inf \{y:(x, y) \in G\}$ and $k_{2}=\sup \{y:(x, y) \in G\}$, and $M_{i}=M_{i}(x)(i=1,2)$ are once-continuously differentiable for $x \in\left[-m_{1}, m_{2}\right]$ with $-m_{1}=\inf \{x:(x, y) \in G\}$ and $m_{2}=\sup \{x:(x, y) \in G\}$. Besides

$$
K_{1}(y)\left\{\begin{array} { l l }
{ > 0 } & { \text { for } y > 0 , } \\
{ = 0 } & { \text { for } y = 0 , } \\
{ < 0 } & { \text { for } y < 0 , }
\end{array} \quad \text { and } \quad M _ { 1 } (x) \left\{\begin{array}{ll}
>0 & \text { for } x>0 \\
=0 & \text { for } x=0 \\
<0 & \text { for } x<0
\end{array}\right.\right.
$$

as well as $K_{2}(y)>0$ and $M_{2}(x)>0$ everywhere in G, so that
$K(y)=K_{1}(y) / K_{2}(y)\left\{\begin{array}{ll}>0 & \text { for } y>0, \\ =0 & \text { for } y=0, \\ <0 & \text { for } y<0,\end{array} \quad\right.$ and $\quad M(x)=M_{1}(x) / M_{2}(x) \begin{cases}>0 & \text { for } x>0 \\ =0 & \text { for } x=0 . \\ <0 & \text { for } x<0\end{cases}$

We assume that the following two limits $\lim _{y \rightarrow 0} K(y)$ and $\lim _{x \rightarrow 0} M(x)$ exist in G.
In this paper we also assume

$$
K(y) M(x) \begin{cases}>0 & \text { for } x>0, y>0 \\ =0 & \text { for } x=0 ; y=0 \\ <0 & \text { for } x>0, y<0 ; x<0, y>0\end{cases}
$$

We note that the case $K M>0$ for $x<0, y<0$ is not considered here. The above Eq. $\left({ }^{*}\right)$ degenerates its order at the origin $O(0,0)$. The boundary ∂G of the domain G is formed by the following curves:
(1) A curve g_{1} which is the elliptic arc lying in the first quadrant $x>0, y>0$ and connecting the points $A(1,0)$ and $B(0,1)$; (2) two hyperbolic characteristic arcs g_{2} and g_{3} :

$$
g_{2}: \int_{1}^{x}(M(t))^{1 / 2} d t=\int_{0}^{y}(-K(t))^{1 / 2} d t, \quad g_{3}: \int_{0}^{x}(M(t))^{1 / 2} d t=-\int_{0}^{y}(-K(t))^{1 / 2} d t,
$$

descending from the points $A(1,0)$ and $O(0,0)$ until they terminate at a common point of intersection $P_{1}\left(x_{p_{1}}, y_{p_{1}}\right)$ in the fourth quadrant $x>0, y<0$; and (3) two other hyperbolic characteristic arcs γ_{2} and γ_{3} :

$$
\gamma_{2}: \int_{0}^{x}(-M(t))^{1 / 2} d t=\int_{1}^{y}(K(t))^{1 / 2} d t, \quad \gamma_{3}: \int_{0}^{x}(-M(t))^{1 / 2} d t=-\int_{0}^{y}(K(t))^{1 / 2} d t
$$

emanating from the points $B(0,1)$ and $O(0,0)$ until they terminate at a common point of intersection $P_{2}\left(x_{p_{2}}, y_{p_{2}}\right)$ in the second quadrant $x<0, y>0$. Assume the boundary condition

$$
\begin{equation*}
u=0 \quad \text { on } g_{1} \cup g_{2} \cup \gamma_{2} . \tag{**}
\end{equation*}
$$

The Tricomi problem, or Problem (T) consists in finding a function $u=u(x, y)$ which satisfies the Eq. $\left({ }^{*}\right)$ in G and the boundary condition (${ }^{* *}$) on $g_{1} \cup g_{2} \cup \gamma_{2}$.

Definition A function $u=u(x, y)$ is a quasi-regular solution [7,8,10-13] of Problem (T) if (i) $u \in C^{2}(G) \cap C(\bar{G}), \bar{G}=G \cup \partial G$; (ii) the Green's theorem (of the integral calculus) is applicable to the integrals

$$
\iint_{G} u_{x} L u d x d y, \quad \iint_{G} u_{y} L u d x d y
$$

(iii) the boundary and region integrals, which arise, exist; and (iv) u satisfies the mixed type Eq. $\left(^{*}\right)$ in G and the boundary condition $\left(^{* *}\right)$ on $g_{1} \cup g_{2} \cup \gamma_{2}$.
Theorem Consider the bi-parabolic elliptic bi-hyperbolic Eq. (*) and the boundary condition (**). Also consider the afore-described simply-connected mixed domain G of
the xy euclidean plane. Besides let us assume the conditions:
$\left(\mathrm{R}_{1}\right): \quad r<0$ on $g_{3} \cup \gamma_{3}$,
$\left(\mathrm{R}_{2}\right)$: the elliptic arc g_{1} is star-like in the sense that $x d y-y d x \geq 0$,
$\left(\mathrm{R}_{3}\right): \begin{cases}2 r+x r_{x}+y r_{y}<0 & \text { for } x \geq 0, y \geq 0 \\ r+x r_{x}<0 & \text { for } x \geq 0, y \leq 0 \quad \text { and } \quad r+y r_{y}<0 \quad \text { for } x \leq 0, y \geq 0,\end{cases}$
$\left(\mathrm{R}_{4}\right): \begin{cases}K_{1}(y)>0 & \text { for } y>0 ; K_{1}(y)<0 \quad \text { for } y<0 ; K_{1}(0)=0 \\ K_{2}(y)>0 & \text { in } G \quad \text { and } K_{2}(y)-y K_{2}^{\prime}(y)>0 \quad \text { for } y \geq 0,\end{cases}$
$\left(\mathrm{R}_{5}\right):\left\{\begin{array}{ll}M_{1}(x)>0 & \text { for } x>0 ; M_{1}(x)<0 \quad \text { for } x<0 ; M_{1}(0)=0 \\ M_{2}(x)>0 & \text { in } G \quad \text { and } M_{2}(x)-x \dot{M}_{2}(x)>0 \quad \text { for } x \geq 0,\end{array}\right.$.
$\left(\mathrm{R}_{6}\right): \quad K_{i}^{\prime}(y)>0, \quad$ in G, \quad and
$\left(\mathrm{R}_{7}\right): \quad \dot{M}_{i}(x)>0, \quad$ in G, \quad for $i=1,2$, with symbols

$$
()_{x}=\partial() / \partial x, \quad()^{\bullet}=d() / d x, \quad()_{y}=\partial() / \partial y, \quad()^{\prime}=d() / d y
$$

where $f=f(x, y)$ is continuous in $G, r=r(x, y)$ is once-continuously differentiable in G, $K_{i}=K_{i}(y)(i=1,2)$ are once-continuously differentiable for $y \in\left[-k_{1}, k_{2}\right]$ with $-k_{1}=$ $\inf \{y:(x, y) \in G\}$ and $k_{2}=\sup \{y:(x, y) \in G\}$, and $M_{i}=M_{i}(x)(i=1,2)$ are once-continuously differentiable for $x \in\left[-m_{1}, m_{2}\right]$ with $-m_{1}=\inf \{x:(x, y) \in G\}$ and $m_{2}=\sup \{x$: $(x, y) \in G\}$. Then the Problem (T) has at most one quasi-regular solution in G.

Proof We apply the well-known $a-b-c$ energy integral method with $a=0$, and use the above mixed type Eq. (*) as well as the boundary condition (**). First, we assume two quasi-regular solutions u_{1}, u_{2} of the Problem (T).

Then we claim that $u=u_{1}-u_{2}=0$ holds in the domain G. In fact, we investigate

$$
\begin{equation*}
0=J=2\langle l u, L u\rangle_{0}=\iint_{G} 2 l u L u d x d y \tag{1}
\end{equation*}
$$

where $l u=b(x) u_{x}+c(y) u_{y}$, and $L u=L\left(u_{1}-u_{2}\right)=L u_{1}-L u_{2}=f-f=0$ in G, with choices

$$
b=b(x)=\left\{\begin{array}{l}
x \text { in } G, x \geq 0, y \geq 0 \tag{2}\\
x \text { in } G, x \geq 0, y \leq 0, \\
0 \quad \text { in } G, x \leq 0, y \geq 0
\end{array} \quad c=c(y)= \begin{cases}y & \text { in } G, x \geq 0, y \geq 0 \\
0 & \text { in } G, x \geq 0, y \leq 0 \\
y & \text { in } G, x \leq 0, y \geq 0\end{cases}\right.
$$

We consider the new differential identities

$$
2 b K_{1} M_{2} u_{x} u_{x x}=\left(b K_{1} M_{2} u_{x}^{2}\right)_{x}-\left(b M_{2}\right)^{\bullet} K_{1} u_{x}^{2},
$$

$$
\begin{gathered}
2 b K_{2} M_{1} u_{x} u_{y y}=\left(2 b K_{2} M_{1} u_{x} u_{y}\right)_{y}-2 b M_{1} K_{2}^{\prime} u_{x} u_{y}-\left(b K_{2} M_{1} u_{y}^{2}\right)_{x}+\left(b M_{1}\right)^{\bullet} K_{2} u_{y}^{2} \\
2 c K_{1} M_{2} u_{y} u_{x x}=\left(2 c K_{1} M_{2} u_{x} u_{y}\right)_{x}-2 c K_{1} \dot{M}_{2} u_{x} u_{y}-\left(c K_{1} M_{2} u_{x}^{2}\right)_{y}+\left(c K_{1}\right)^{\prime} M_{2} u_{x}^{2} \\
2 c K_{2} M_{1} u_{y} u_{y y}=\left(c K_{2} M_{1} u_{y}^{2}\right)_{y}-\left(c K_{2}\right)^{\prime} M_{1} u_{y}^{2} \\
2 b r u u_{x}=\left(b r u^{2}\right)_{x}-(b r)_{x} u^{2}, 2 c r u u_{y}=\left(c r u^{2}\right)_{y}-(c r)_{y} u^{2}
\end{gathered}
$$

as well as t_{1} is the coefficient of u_{x} in $L u$, or

$$
\begin{equation*}
t_{1}=t_{1}(x, y)=K_{1}(y) \dot{M}_{2}(x) \tag{3}
\end{equation*}
$$

and t_{2} is the coefficient of u_{y} in $L u$, or

$$
\begin{equation*}
t_{2}=t_{2}(x, y)=K_{2}^{\prime}(y) M_{1}(x) . \tag{4}
\end{equation*}
$$

Employing these identities and the classical Green's theorem of the integral calculus we obtain from (*), (1), (3), and (4) that

$$
\begin{align*}
0=J & =\iint_{G} 2\left(b u_{x}+c u_{y}\right)\left[K_{1}\left(M_{2} u_{x}\right)_{x}+M_{1}\left(K_{2} u_{y}\right)_{y}+r u\right] d x d y \\
& =\iint_{G} 2\left(b u_{x}+c u_{y}\right)\left[K_{1} M_{2} u_{x x}+K_{2} M_{1} u_{y y}+t_{1} u_{x}+t_{2} u_{y}+r u\right] d x d y=I_{G}+I_{\partial G} \tag{5}
\end{align*}
$$

where

$$
I_{G}=\iint_{G}\left(A u_{x}^{2}+B u_{y}^{2}+\Gamma u^{2}+2 \Delta u_{x} u_{y}\right) d x d y
$$

and

$$
I_{\partial G}=\int_{\partial G}\left(\tilde{A} u_{x}^{2}+\tilde{B} u_{y}^{2}+\tilde{\Gamma} u^{2}+2 \tilde{\Delta} u_{x} u_{y}\right) d s
$$

with

$$
\begin{aligned}
A & =-K_{1}\left(b M_{2}\right)^{\bullet}+\left(c K_{1}\right)^{\prime} M_{2}+2 b t_{1}, B=K_{2}\left(b M_{1}\right)^{\bullet}-\left(c K_{2}\right)^{\prime} M_{1}+2 c t_{2} \\
\Gamma & =-\left[(b r)_{x}+(c r)_{y}\right] \\
\Delta & =-\left[b K_{2}^{\prime} M_{1}+c K_{1} \dot{M}_{2}-b t_{2}-c t_{1}\right] \\
& =-\left[b\left(K_{2}^{\prime} M_{1}-t_{2}\right)+c\left(K_{1} \dot{M}_{2}-t_{1}\right)\right]=0 \text { (because of (3) and (4)) in } G,
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{A}=\left(b v_{1}-c v_{2}\right) K_{1} M_{2}, \quad \tilde{B}=\left(-b v_{1}+c v_{2}\right) K_{2} M_{1}, \\
& \tilde{\Gamma}=\left(b v_{1}+c v_{2}\right) r, \quad \tilde{\Delta}=b K_{2} M_{1} v_{2}+c K_{1} M_{2} v_{1} \quad \text { on } \partial \mathrm{G},
\end{aligned}
$$

where

$$
\begin{equation*}
v=\left(v_{1}, v_{2}\right)=(d y / d s,-d x / d s) \tag{6}
\end{equation*}
$$

is the outer unit normal vector on the boundary ∂G of the domain G such that

$$
d s^{2}=d x^{2}+d y^{2}>0, \quad|v|=\left(v_{1}^{2}+v_{2}^{2}\right)^{1 / 2}=1
$$

and

$$
\iint_{G}()_{x} d x d y=\int_{\partial G}() v_{1} d s, \quad \iint_{G}()_{y} d x d y=\int_{\partial G}() v_{2} d s,
$$

are the Green's integral formulas.
Note that in $G, x \geq 0, y \geq 0$ with $b=x, c=y$ (from (2)) one gets, from (3) and (4), that

$$
\begin{aligned}
A & =-K_{1}\left(x M_{2}\right)^{\bullet}+\left(y K_{1}\right)^{\prime} M_{2}+2 x t_{1}=-K_{1}\left(M_{2}+x \dot{M}_{2}\right)+\left(K_{1}+y K_{1}^{\prime}\right) M_{2}+2 x K_{1} \dot{M}_{2} \\
& =x K_{1} \dot{M}_{2}+y K_{1}^{\prime} M_{2} \geq 0 \quad\left(\text { from conditions }\left(\mathrm{R}_{6}\right) \text { and }\left(\mathrm{R}_{7}\right)\right), \\
B & =K_{2}\left(x M_{1}\right)^{\bullet}-\left(y K_{2}\right)^{\prime} M_{1}+2 y t_{2}=K_{2}\left(M_{1}+x \dot{M}_{1}\right)-\left(K_{2}+y K_{2}^{\prime}\right) M_{1}+2 y K_{2}^{\prime} M_{1} \\
& =x K_{2} \dot{M}_{1}+y K_{2}^{\prime} M_{1} \geq 0 \quad\left(\text { from conditions }\left(\mathrm{R}_{6}\right) \text { and }\left(\mathrm{R}_{7}\right)\right), \\
\Gamma & =-\left[(x r)_{x}+(y r)_{y}\right]=-\left(2 r+x r_{x}+y r_{y}\right)>0\left(\text { from condition }\left(\mathrm{R}_{3}\right): x \geq 0, y \geq 0\right),
\end{aligned}
$$

and

$$
\begin{aligned}
A B-\Delta^{2} & =\left(x K_{1} \dot{M}_{2}+y K_{1}^{\prime} M_{2}\right)\left(x K_{2} \dot{M}_{1}+y K_{2}^{\prime} M_{1}\right) \\
& =x\left(K_{1} K_{2} \dot{M}_{1} \dot{M}_{2}\right)+x y\left(K_{1} K_{2}^{\prime} M_{1} \dot{M}_{2}+K_{1}^{\prime} K_{2} \dot{M}_{1} M_{2}\right)+y\left(K_{1}^{\prime} K_{2}^{\prime} M_{1} M_{2}\right) \geq 0
\end{aligned}
$$

(from conditions $\left(\mathrm{R}_{6}\right)$ and $\left(\mathrm{R}_{7}\right)$).

Similarly in $G, x \geq 0, y \leq 0$ with $b=x, c=0$ (from (2)) we find, from (3) and (4), that

$$
\begin{gathered}
A=-K_{1}\left(x M_{2}\right)^{\bullet}+\left(0 \cdot K_{1}\right)^{\prime} M_{2}+2 x t_{1}=-K_{1}\left(M_{2}+x \dot{M}_{2}\right)+2 x K_{1} \dot{M}_{2} \\
=\left(-K_{1}\right)\left(M_{2}-x \dot{M}_{2}\right)>0 \quad\left(\text { from conditions }\left(\mathrm{R}_{4}\right) \text { and }\left(\mathrm{R}_{5}\right)\right), \\
B=K_{2}\left(x M_{1}\right)^{\bullet}-\left(0 \cdot K_{2}\right)^{\prime} M_{1}+2 \cdot 0 \cdot K_{2}^{\prime} M_{1}=K_{2}\left(M_{1}+x \dot{M}_{1}\right) \geq 0\left(\text { from }\left(\mathrm{R}_{4}\right) \text { and }\left(\mathrm{R}_{7}\right)\right), \\
\Gamma=-\left[(x r)_{x}+(0 \cdot r)_{y}\right]=-\left(r+x r_{x}\right)>0\left(\text { from condition }\left(\mathrm{R}_{3}\right): x \geq 0, y \leq 0\right),
\end{gathered}
$$

and

$$
A B-\Delta^{2}=\left(-K_{1}\right) K_{2}\left(M_{1}+x \dot{M}_{1}\right)\left(M_{2}-x \dot{M}_{2}\right)>0\left(\text { from conditions }\left(\mathrm{R}_{4}\right) \text { and }\left(\mathrm{R}_{5}\right)\right)
$$

Finally in $G, x \leq 0, y \geq 0$ with $b=0, c=y$ (from (2)) we find, from (3) and (4), that

$$
\begin{aligned}
A= & -K_{1}\left(0 \cdot M_{2}\right)^{\bullet}+\left(y K_{1}\right)^{\prime} M_{2}+2 \cdot 0 \cdot K_{1} \dot{M}_{2}=\left(y K_{1}\right)^{\prime} M_{2}=\left(K_{1}+y K_{1}^{\prime}\right) M_{2} \geq 0, \\
& \quad\left(\text { from conditions }\left(\mathrm{R}_{5}\right) \text { and }\left(\mathrm{R}_{6}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
B & =K_{2}\left(0 \cdot M_{1}\right)^{\bullet}-\left(y K_{2}\right)^{\prime} M_{1}+2 y K_{2}^{\prime} M_{1}=-K_{2} M_{1}-y K_{2}^{\prime} M_{1}+2 y K_{2}^{\prime} M_{1} \\
& =\left(-M_{1}\right)\left(K_{2}-y K_{2}^{\prime}\right)>0\left(\text { from conditions }\left(\mathrm{R}_{4}\right) \text { and }\left(\mathrm{R}_{5}\right)\right)
\end{aligned}
$$

$$
\Gamma=-\left[(0 \cdot r)_{x}+(y r)_{y}\right]=-\left(r+y r_{y}\right)>0\left(\text { from condition }\left(R_{3}\right): x \leq 0, y \geq 0\right)
$$

and

$$
A B-\Delta^{2}=\left(-M_{1}\right) M_{2}\left(K_{2}-y K_{2}^{\prime}\right)>0 \quad\left(\text { from conditions }\left(R_{4}\right) \text { and }\left(R_{5}\right)\right)
$$

Therefore the region first integral $I_{G}($ of (5)) is

$$
\begin{equation*}
I_{G}=I_{\bar{G}_{e}}+I_{\bar{G}_{h_{1}}}+I_{\bar{G}_{h_{2}}}+I_{0}>0 \tag{7}
\end{equation*}
$$

where $\bar{G}_{e}=G_{e} \cup \partial G_{e}$, such that $\partial G_{e}=g_{1} \cup(O A)$, and $\bar{G}_{h_{i}}=G_{h_{i}} \cup \partial G_{h_{i}}(i=1,2)$, such that $\partial G_{h_{1}}=(A O) \cup g_{3} \cup g_{2}$ and $\partial G_{h_{2}}=(O B) \cup \gamma_{2} \cup \gamma_{3}$.

In fact,

$$
Q=A u_{x}^{2}+B u_{y}^{2}+2 \Delta u_{x} u_{y}=Q\left(u_{x}, u_{y}\right),
$$

where

$$
\begin{aligned}
I_{\bar{G}_{e}} & =\iint_{G, x \geq 0, y \geq 0} Q\left(u_{x}, u_{y}\right) d x d y \\
& =\iint_{G, x \geq 0, y \geq 0}\left[\left(x K_{1} \dot{M}_{2}+y K_{1}^{\prime} M_{2}\right) u_{x}^{2}+\left(x K_{2} \dot{M}_{1}+y K_{2}^{\prime} M_{1}\right) u_{y}^{2}\right] d x d y \geq 0
\end{aligned}
$$

(from conditions $\left(\mathrm{R}_{6}\right)$ and $\left(\mathrm{R}_{7}\right)$),

$$
\begin{aligned}
I_{\bar{G}_{h_{1}}} & =\iint_{G, x \geq 0, y \leq 0} Q\left(u_{x}, u_{y}\right) d x d y \\
& =\iint_{G, x \geq 0, y \leq 0}\left[\left(-K_{1}\right)\left(M_{2}-x \dot{M}_{2}\right) u_{x}^{2}+K_{2}\left(M_{1}+x \dot{M}_{1}\right) u_{y}^{2}\right] d x d y \geq 0
\end{aligned}
$$

(from conditions $\left(\mathrm{R}_{5}\right)$ and $\left(\mathrm{R}_{7}\right)$),

$$
\begin{aligned}
I_{\bar{G}_{h_{2}}} & =\iint_{G, x \leq 0, y \geq 0} Q\left(u_{x}, u_{y}\right) d x d y \\
& =\iint_{G, x \leq 0, y \geq 0}\left[\left(K_{1}+y K_{1}^{\prime}\right) M_{2} u_{x}^{2}+\left(K_{2}-y K_{2}^{\prime}\right)\left(-M_{1}\right) u_{y}^{2}\right] d x d y \geq 0
\end{aligned}
$$

(from conditions $\left(\mathrm{R}_{4}\right)$ and $\left(\mathrm{R}_{6}\right)$),
and
$I_{0}=\iint_{G} \Gamma u^{2} d x d y=-\left\{\begin{array}{l}\iint_{G, x \geq 0, y \geq 0}\left(2 r+x r_{x}+y r_{y}\right) u^{2} d x d y>0 \\ \left.\iint_{G, x \geq 0, y \leq 0}\left(r+x r_{x}\right) u^{2} d x d y>0 \quad \text { (from condition }\left(\mathrm{R}_{3}\right)\right) . \\ \iint_{G, x \leq 0, y \geq 0}\left(r+y r_{y}\right) u^{2} d x d y>0\end{array} \quad\right.$.

We note that on g_{1} with $b=x(>0), c=y(\geq 0)$ (from (2)) we find that

$$
\begin{aligned}
& \tilde{A}=\left(x v_{1}-y v_{2}\right) K_{1} M_{2}, \quad \tilde{B}=\left(-x v_{1}+y v_{2}\right) K_{2} M_{1}, \\
& \tilde{\Gamma}=\left(x v_{1}+y v_{2}\right) r, \quad \tilde{\Delta}=x K_{2} M_{1} v_{2}+y K_{1} M_{2} v_{1} .
\end{aligned}
$$

From the boundary condition (${ }^{* *}$) we get on g_{1} that $0=d u=u_{x} d x+u_{y} d y$, or

$$
\begin{equation*}
u_{x}=N v_{1}, \quad u_{y}=N v_{2}, \tag{8}
\end{equation*}
$$

on g_{1} where N is a normalizing factor. We denote

$$
\begin{equation*}
\tilde{Q}=\tilde{Q}\left(u_{x}, u_{y}\right)=\tilde{A} u_{x}^{2}+\tilde{B} u_{y}^{2}+2 \tilde{\Delta} u_{x} u_{y}, \tag{9}
\end{equation*}
$$

a quadratic form on ∂G with respect to u_{x}, u_{y}. Also we denote

$$
\begin{equation*}
H=K_{1} M_{2} v_{1}^{2}+K_{2} M_{1} v_{2}^{2}, \tag{10}
\end{equation*}
$$

on the boundary ∂G of the mixed domain G. From (8) and (10) the form (9) is

$$
\begin{equation*}
\tilde{Q}=N^{2}\left(x v_{1}+y v_{2}\right) H . \tag{11}
\end{equation*}
$$

From the star-likelness condition $\left(\mathbf{R}_{2}\right)$ on g_{1}, the fact that $H>0$ on g_{1}, and (${ }^{* *}$) on g_{1} as well as from (11) we get

$$
I_{g_{1}}=\int_{g_{1}} \tilde{Q}\left(u_{x}, u_{y}\right) d s+\int_{g_{1}} \tilde{\Gamma} u^{2} d s=\int_{g_{1}} N^{2}\left(x v_{1}+y v_{2}\right) H d s+\int_{g_{1}}\left(x v_{1}+y v_{2}\right) r u^{2} d s,
$$

or

$$
\begin{equation*}
I_{g_{1}}=\int_{g_{1}} N^{2}(x d y-y d x) H \geq 0 \tag{12}
\end{equation*}
$$

Similarly on g_{2} with $b=x(>0), c=0$ (from (2)) we get

$$
\begin{align*}
I_{g_{2}}=\int_{g_{2}} \tilde{Q}\left(u_{x}, u_{y}\right) d s+\int_{g_{2}} \tilde{\Gamma} u^{2} d s & =\int_{g_{2}} N^{2}\left(x v_{1}\right) H d s+\int_{g_{2}}\left(x v_{1}\right) r u^{2} d s, \quad \text { or } \tag{13}\\
I_{g_{2}} & =0
\end{align*}
$$

because $u=0$ on g_{2} (from (${ }^{* *}$) and thus from (8) on g_{2}) and $H=0$ on the characteristic g_{2} of (*) (from (10)). On g_{3} also with $b=x(>0), c=0$ (from (2)) one gets

$$
\begin{align*}
I_{g_{3}}= & \int_{g_{3}} \tilde{Q}\left(u_{x}, u_{y}\right) d s+\int_{g_{3}} \tilde{\Gamma} u^{2} d s \\
= & \int_{g_{3}}\left[\left(x K_{1} M_{2} v_{1}\right) u_{x}^{2}+\left(-x K_{2} M_{1} v_{1}\right) u_{y}^{2}+2\left(x K_{2} M_{1} v_{2}\right) u_{x} u_{y}\right] d s+\int_{g_{3}}\left[\left(x v_{1}\right) r\right] u^{2} d s, \text { or } \\
I_{g_{3}}= & \int_{g_{3}}\left[\left(K_{1} M_{2}\right)\left(x v_{1}\right) u_{x}^{2}+\left(-K_{2} M_{1}\right)\left(x v_{1}\right) u_{y}^{2}+2\left(K_{2} M_{1}\right)\left(x v_{2}\right) u_{x} u_{y}\right] d s \\
& +\int_{g_{3}}\left[r\left(x v_{1}\right)\right] u^{2} d s>0 \tag{14}
\end{align*}
$$

because on g_{3} we have $v_{1}=-(M /(M-K))^{1 / 2}<0, v_{2}=-(-K /(M-K))^{1 / 2}<0$, and $r<0$ (from (R_{1})), as well as

$$
\begin{aligned}
\tilde{A} & =\left(K_{1} M_{2}\right)\left(x v_{1}\right)=x\left(-K_{1}\right) M_{2}(M /(M-K))^{1 / 2}>0, \\
\tilde{B} & =\left(-K_{2} M_{1}\right)\left(x v_{1}\right)=x K_{2} M_{1}(M /(M-K))^{1 / 2}>0, \quad \text { and } \\
\tilde{A} \tilde{B}-(\tilde{\Delta})^{2} & =\left[\left(K_{1} M_{2}\right)\left(x v_{1}\right)\right]\left[\left(-K_{2} M_{1}\right)\left(x v_{1}\right)\right]-\left[\left(K_{2} M_{1}\right)\left(x v_{2}\right)\right]^{2} \\
& =-x^{2} K_{1} K_{2} M_{1} M_{2} v_{1}^{2}-x^{2}\left(K_{2} M_{1}\right)^{2} v_{2}^{2}=-x^{2} K_{2} M_{1} H=0
\end{aligned}
$$

because $H=0$ on the characteristic g_{3} of $\left(^{*}\right)\left(\right.$ from (10)). Besides on γ_{2} with $b=0, c=y$ (from (2)) we get

$$
\begin{gather*}
I_{\gamma_{2}}=\int_{\gamma_{2}} \tilde{Q}\left(u_{x}, u_{y}\right) d s+\int_{\gamma_{2}} \tilde{\Gamma} u^{2} d s=\int_{\gamma_{2}} N^{2}\left(y v_{2}\right) H d s+\int_{\gamma_{2}}\left(y v_{2}\right) r u^{2} d s, \text { or } \\
\mathrm{I}_{\gamma_{2}}=0, \tag{15}
\end{gather*}
$$

because $u=0$ on γ_{2} (from (**) and thus from (8) on γ_{2}) and $H=0$ on the characteristic γ_{2} of $\left(^{*}\right)$ (from (10)). Finally on γ_{3} also with $b=0, c=y(>0)$ (from (2)) one gets

$$
\begin{aligned}
I_{\gamma_{3}} & =\int_{\gamma_{3}} \tilde{Q}\left(u_{x}, u_{y}\right) d s+\int_{\gamma_{3}} \tilde{\Gamma} u^{2} d s \\
& =\int_{\gamma_{3}}\left[\left(-y K_{1} M_{2} v_{2}\right) u_{x}^{2}+\left(y K_{2} M_{1} v_{2}\right) u_{y}^{2}+2\left(y K_{1} M_{2} v_{1}\right) u_{x} u_{y}\right] d s+\int_{\gamma_{3}}\left[\left(y v_{2}\right) r\right] u^{2} d s,
\end{aligned}
$$

or

$$
\begin{align*}
I_{\gamma_{3}}= & \int_{\gamma_{3}}\left[\left(-K_{1} M_{2}\right)\left(y v_{2}\right) u_{x}^{2}+\left(K_{2} M_{1}\right)\left(y v_{2}\right) u_{y}^{2}+2\left(K_{1} M_{2}\right)\left(y v_{1}\right) u_{x} u_{y}\right] d s \\
& +\int_{\gamma_{3}}\left[r\left(y v_{2}\right)\right] u^{2} d s>0, \tag{16}
\end{align*}
$$

because on γ_{3} we have $v_{1}=-(-M /(K-M))^{1 / 2}<0, v_{2}=-(K /(K-M))^{1 / 2}<0$, and $r<0$ (from $\left(\mathrm{R}_{1}\right)$). Therefore from (12) to (16)

$$
\begin{equation*}
I_{\partial G}=I_{g_{1}}+I_{g_{2}}+I_{g_{3}}+I_{\gamma_{2}}+I_{\gamma_{3}}=I_{g_{1}}+I_{g_{3}}+I_{\gamma_{3}}>0 \tag{17}
\end{equation*}
$$

From (5), (7), and (17) we claim that

$$
\begin{equation*}
u=0 \tag{18}
\end{equation*}
$$

in G. In fact, from (5), (7), and (17) we get $0=I_{G}+I_{\partial G}>0$ with $I_{G}>0, I_{\partial G}>0$.
These relations yield

$$
\begin{equation*}
I_{G}=I_{\partial G}=0 \tag{19}
\end{equation*}
$$

From (19): $I_{G}=0$ and the fact that $I_{\bar{G}_{e}} \geq 0, I_{\bar{G}_{h_{i}}} \geq 0(i=1,2), I_{0}>0$, we find that

$$
I_{\bar{G}_{e}}=\iint_{G, x \geq 0, y \geq 0}\left[\left(x K_{1} \dot{M}_{2}+y K_{1}^{\prime} M_{2}\right) u_{x}^{2}+\left(x K_{2} \dot{M}_{1}+y K_{2}^{\prime} M_{1}\right) u_{y}^{2}\right] d x d y=0,
$$

yielding $u_{x}=u_{y}=0$ in $G, x \geq 0, y \geq 0$ since $K_{i}^{\prime}>0$ and $\dot{M}_{i}>0(i=1,2)$ from conditions $\left(\mathrm{R}_{6}\right)$ and $\left(\mathrm{R}_{7}\right)$, respectively. Thus $u=$ constant in $G, x \geq 0, y \geq 0$, and $u=0$ on g_{1} (from (**)) it will follow that

$$
\begin{equation*}
u(x, y)=0 \quad \text { in } G, x \geq 0, y \geq 0 \tag{20}
\end{equation*}
$$

We find also the same result as (20) if we employ $I_{\bar{G}_{h_{1}}}=0, \quad$ or $I_{\bar{G}_{h_{2}}}=0, \quad$ or $I_{0}=0 \quad$ (with $r>0$ and $2 r+x r_{x}+y r_{y}>0: x \geq 0, y \geq 0$).

Similarly from (19): $I_{\partial G}=0$ and the fact that $I_{g_{1}} \geq 0, I_{g_{2}}=0, I_{g_{3}}>0, I_{\gamma_{2}}=0$, $I_{\gamma_{3}}>0$ we get that

$$
\begin{align*}
I_{g_{3}}= & \int_{g_{3}}\left[\left(-K_{1}\right) M_{2}(M /(M-K))^{1 / 2} u_{x}^{2}+K_{2} M_{1}(M /(M-K))^{1 / 2} u_{y}^{2}\right. \\
& \left.-2 K_{2} M_{1}(-K /(M-K))^{1 / 2} u_{x} u_{y}\right] x d s+\int_{g_{3}}(-r)(M /(M-K))^{1 / 2} u_{x}^{2} d s \\
= & \int_{g_{3}}\left[\left(-K_{1}\right) M_{2} M^{1 / 2} u_{x}^{2}+K_{2} M_{1} M^{1 / 2} u_{y}^{2}-2 K_{2} M_{1}(-K)^{1 / 2} u_{x} u_{y}\right. \\
& \left.+(-r) M^{1 / 2} u^{2}\right] x(M-K)^{-1 / 2} d s, \quad \text { or } \\
I_{g_{3}}= & \int_{g_{3}}\left[K_{2} M_{2}\left((-K)^{1 / 2} u_{x}-M^{1 / 2} u_{y}\right)^{2}+(-r) u^{2}\right] x(-d y)=0, \tag{21}
\end{align*}
$$

yielding that

$$
\begin{equation*}
u=0 \quad \text { on } g_{3}, \tag{22}
\end{equation*}
$$

as $r<0$ on g_{3} from condition $\left(\mathrm{R}_{1}\right)$. Similarly

$$
\begin{equation*}
I_{\gamma_{3}}=\int_{\gamma_{3}}\left[K_{2} M_{2}\left(K^{1 / 2} u_{x}-(-M)^{1 / 2} u_{y}\right)^{2}+(-r) u^{2}\right] y(-d y)=0, \tag{23}
\end{equation*}
$$

yielding

$$
\begin{equation*}
u=0 \quad \text { on } \gamma_{3}, \tag{24}
\end{equation*}
$$

as $r<0$ on γ_{3} from condition $\left(\mathrm{R}_{1}\right)$.
Thus by a well-known theorem on hyperbolic equations if $u=0$ on g_{2} (from (**)) and $u=0$ on g_{3} (from (22)) then $u=0$ in $G, x \geq 0, y \leq 0$. (Another reasoning is that, in particular, $u(x, 0)=0$ and $u_{y}(x, 0)=0$, so that $u=0$ in $G, x \geq 0, y \leq 0$, because of the uniqueness of the solution of the Cauchy problem for hyperbolic Eq. (*)). Similarly if $u=0$ on $\gamma_{2}\left(\right.$ from (**)) and $u=0$ on γ_{3} (from (24)) then $u=0$ throughout $G, x \leq 0$, $y \geq 0$. Thus

$$
u(x, y)=0,
$$

everywhere in G, completing the proof of the uniqueness theorem.
Note that the case: $r=0$ in G and $K_{i}^{\prime}(0)=\dot{M}_{i}(0)=0(i=1,2)$, yields also uniqueness results for the Problem (T).

References

[1] G. Barantsev (1986). In: J.M. Rassias (Ed.), On Singularities of the Tricomi Problem Solution by the Fourier Method, Vol. 90, pp. 47-54. Teubner-Texte zur Mathematik, Leipzig.
[2] G. Fichera (1985). In: J.M. Rassias (Ed.), Francesco Giacomo Tricomi, Vol. 79, pp. 6-31. Teubner-Texte zur Mathematik, Leipzig.
[3] F.I. Frankl (1945). On the problems of Chaplygin for mixed subsonic and supersonic flows. Izv. Akad. Nauk SSSR Ser. Mat., 9, 121-143.
[4] M. Kracht and E. Kreyszig (1986). In: J.M. Rassias (Ed.), The Tricomi Equation and Transition Problems, Vol. 90, pp. 157-165. Teubner-Texte zur Mathematik, Leipzig.
[5] E. Kreyszig (1989). Introductory Functional Analysis with Applications. Wiley, New York.
[6] E. Kreyszig (1994). In: J.M. Rassias (Ed.), Banach Spaces in Bergman Operator Theory, pp. 155-165. World Scientific, Singapore.
[7] M.H. Protter (1953). Uniqueness theorems for the Tricomi problem, I, II. J. Rat. Mech. Anal., 2, 107-114; (1955), 4, 721-732.
[8] J.M. Rassias (1977). Mixed type partial differential equations in R^{n}, Ph.D. dissertation, U.C. Berkeley.
[9] J.M. Rassias (1982). A maximum principle in R^{n+1}. J. Math. Anal. and Appl., 85, 106-113. Acad. Press, New York.
[10] J.M. Rassias (1983). On the Tricomi problem with two parabolic lines of degeneracy. Bull. Inst. Math., Acad. Sinica, 12, 62-67.
[11] J.M. Rassias (1990). Lecture Notes on Mixed Type Partial Differential Equations. World Scientific, Singapore.
[12] J.M. Rassias (1992). On the well-posed Tricomi problem in R^{2}. Discuss. Math., 12, 85-93.
[13] J.M. Rassias (1997). Uniqueness of quasi-regular solutions for a parabolic elliptic-hyperbolic Tricomi problem. Bull. Inst. Math., Acad. Sinica, 25, 277-287.
[14] J.M. Rassias (1999). Advances in Equations and Inequalities. Hadronic Press, Inc., Palm Harbor, FL., U.S.A.
[15] J.M. Rassias (1999). Existence of weak solutions for a parabolic elliptic-hyperbolic Tricomi problem. Tsukuba J. Math., 23, 37-54.
[16] R.I. Semerdjieva (1993). Uniqueness of regular solutions for a class of non-linear degenerating hyperbolic equations. Math. Balk., 7, 277-283.
[17] F.G. Tricomi (1923). Sulle equazioni lineari alle parziali di 2° ordine di tipo misto. Atti Accad. Naz. Lincei, 14, 133-247.

[^0]: *E-mail: jrassias@primedu.uoa.gr

