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D. H. Hyers solved this problem for linear mappings. According to P. M. Gruber (1978) this kind
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1. Introduction

In 1940 and in 1968 S. M. Ulam [16] proposed the general Ulam stability problem:
“When is it true that by slightly changing the hypotheses of a theorem one can still
assert that the thesis of the theorem remains true or approximately true?” In 1941
D. H. Hyers [4] solved this problem for linear mappings. According to P. M. Gruber
[3] (1978) this kind of stability problems is of particular interest in probability
theory and in the case of functional equations of different types. In 1995 G. L.
Forti [2] published a survey paper which contained more information than any
other publication relevant to the theory of functional equations. In 1982–1999 we
([5]–[15]) solved the above Ulam problem for different mappings. In particular,
in 1996 we [13] solved the Hyers–Ulam stability problem for quadratic mappings
Q : X → Y satisfying the quadratic functional equation

Q(a1x1 + a2x2) + Q(a2x1 − a1x2) = (a2
1 + a2

2)[Q(x1) + Q(x2)]

for every x1, x2 ∈ X, and fixed reals a1, a2 6= 0, where X and Y are real linear
spaces. In this paper we solve the Hyers–Ulam stability problem for quadratic
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mappings Q : X → Y satisfying the more general quadratic functional equation

Q

( n∑
i=1

aixi

)
+

∑
1≤i<j≤n

Q(ajxi − aixj) = m

n∑
i=1

Q(xi)

for every xi ∈ X (i = 1, 2, . . . , n), and fixed reals ai 6= 0 (i = 1, 2, . . . , n), where
n ≥ 2 is arbitrary, but fixed such that

0 < m =
n∑

i=1

a2
i 6=

[
1 +

(
n

2

)] /
n.

To the best of our knowledge the afore-mentioned functional equation is established
for the first time for n > 2.

Definition 1.1. Let X and Y be real linear spaces. Let a = (a1, a2, . . . , an) 6=
(0, 0, . . . , 0) with ai ∈ R−{0} (i = 1, 2, . . . , n), where R := the set of reals. Then a
mapping Q : X → Y is called quadratic with respect to a if the functional equation

Q

( n∑
i=1

aixi

)
+

∑
1≤i<j≤n

Q(ajxi − aixj) = m

n∑
i=1

Q(xi) (1)

holds for every vector (x1, x2, . . . , xn) ∈ Xn, and fixed real a 6= 0 such that

0 < m =
n∑

i=1

a2
i 6=

[
1 +

(
n

2

)] /
n,

where n is arbitrary but fixed and equals to 2, 3, 4, . . . .

We note that if we set Q(x) = x2 for x ∈ R, then the mapping Q : R → R is
quadratic with respect to any a ∈ Rn, a 6= 0.

Definition 1.2. Let X and Y be real linear spaces, Q : X → Y be a mapping
and a = (a1, a2, . . . , an) 6= (0, 0, . . . , 0) with ai ∈ R (i = 1, 2, . . . , n). For x ∈ X

and m =
n∑

i=1
a2

i > 1 : m 6= [
1 +

(
n
2

)] /
n, where n is arbitrary but fixed and equals

to 2, 3, 4, . . . , set

Q
a
(x) =

n∑
i=1

Q(aix)
/ n∑

i=1

a2
i .

Then the mapping Q
a

: X → Y is called the square of the quadratic weighted mean
of Q with respect to a.
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For every x ∈ R set Q(x) = x2. Then the mapping Q
a

: R → R is quadratic,

such that Q
a
(x)=x2. Denoting by

√
x2

w the quadratic weighted mean, we note that
the above-mentioned mapping Q

a
is an analogous case to the square of the quad-

ratic weighted mean employed in mathematical statistics: x2
w =

n∑
i=1

wix
2
i

/ n∑
i=1

wi,

with weights wi = a2
i , data xi = x, and Q(aix) = (aix)2: i = 1, 2, . . . , n, where n

is arbitrary but fixed and equals to 2, 3, 4, . . . .
If Q : X → Y is quadratic with respect to a = (a1, a2, . . . , an) such that

m =
n∑

i=1
a2

i > 0 and m 6= [
1 +

(
n
2

)] /
n : n = 2, 3, 4, . . . , then we have

Q(mpx) = (mp)2Q(x) (2)

for every x ∈ X and any p ∈ N.
In fact, substitution of xi = 0 (i = 1, 2, . . . , n) in equation (1) yields

Q(0) +
(

n

2

)
Q(0) = mnQ(0),

or
Q(0) = 0. (3)

For p = 0 (2) is trivial.
Substituting x1 = x, xj = 0 (j = 2, 3, . . . , n) in equation (1) and using (3) one

gets that

Q(a1x) +
n∑

j=2

Q(ajx) +
(

n− 1
2

)
Q(0) = m[Q(x) + (n− 1)Q(0)],

or
Q

a
(x) = Q(x) (4)

holds for every x ∈ X.
Moreover substituting aix (i = 1, 2, . . . , n) for xi in equation (1) and using (3)

one finds

Q(mx) +
(

n

2

)
Q(0) = m

n∑
i=1

Q(aix),

or
Q

a
(x) = m−2Q(mx),

which holds for every x ∈ X.
From this and (4), we get

Q(mx) = (m)2Q(x).

Assume (2) is true. From this, with mpx in place of x, we have

Q(mp+1x) = m2Q(mpx) = m2(mp)2Q(x) = (mp+1)2Q(x).

From this we prove by induction formula (2) ([1], [4]).
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2. Hyers–Ulam quadratic stability

Theorem 2.1. Let X and Y be real normed linear spaces. Assume that Y is

complete. Let 0 6= a = (a1, a2, . . . , an) ∈ Rn be fixed with 1 < m =
n∑

i=1
a2

i 6=[
1 +

(
n
2

)] /
n, where n is arbitrary but fixed and equals to 2, 3, 4, . . . , and 0 < m

< 1. Assume that f : X → Y is a mapping for which there exists a constant
ε ≥ 0 (= a constant independent of x1, x2, . . . , xn ∈ X) such that the functional
inequality

∥∥∥∥f

( n∑
i=1

aixi

)
+

n∑
1≤i<j≤n

f(ajxi − aixj)−m
n∑

i=1

f(xi)
∥∥∥∥ ≤ ε (5)

holds for every vector (x1, x2, . . . , xn) ∈ Xn. Then the limit

Q(x) = lim
p→∞

{
m−2pf(mpx), if 1 < m 6= [

1 +
(
n
2

)] /
n,

m2pf(m−px), if 0 < m < 1
(6)

exists for every x ∈ X and Q : X → Y is the unique quadratic mapping with
respect to a, such that

‖f(x)−Q(x)‖ ≤ c (7)

holds for every x ∈ X, where

c =
1
2

2m
∣∣mn−[

1 +
(
n
2

)]∣∣ + m(n−1)|2m−n + 2|+ 2
{∣∣mn−[

1 +
(
n
2

)]∣∣+(
n
2

)}
|m2 − 1| ∣∣mn− [

1 +
(
n
2

)]∣∣ ε.

(7a)

Denote c1 = c, if 1 < m 6= [
1 +

(
n
2

)] /
n : |m2 − 1| = m2 − 1 and

∣∣∣∣mn−
[
1 +

(
n

2

)]∣∣∣∣ =


 mn− [

1 +
(
n
2

)]
, if m >

1+(n
2)

n

1 +
(
n
2

)−mn, if 1 < m <
1+(n

2)
n

.

Also c2 = c and if 0 < m < 1: |m2 − 1| = 1 − m2 and
∣∣mn− [

1 +
(
n
2

)]∣∣ =
1 +

(
n
2

)−mn.

Proof of Existence. Substitution of xi = 0 (i = 1, 2, . . . , n) in the inequality (5)
yields that ∥∥∥∥∥∥f(0) +

∑
1≤i<j≤n

f(0)−m
n∑

i=1

f(0)

∥∥∥∥∥∥ ≤ ε,
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or

‖f(0)‖ ≤ ε∣∣mn− [
1 +

(
n
2

)]∣∣ =




ε

mn−[1+(n
2)]

, if m >
1+(n

2)
n ,

ε

1+(n
2)−mn

, if 0 < m <
1+(n

2)
n : m 6= 1.

(8)

We begin with the case 1 < m 6= [
1 +

(
n
2

)] /
n (n = 2, 3, 4, . . . ).

Substituting x1 = x, xj = 0 (j = 2, 3, . . . , n) in the inequality (5) and using
(8) and the triangle inequality one concludes the functional inequality

∥∥∥∥f(a1x) +
n∑

j=2

f(ajx) +
(

n− 1
2

)
f(0)−m[f(x) + (n− 1)f(0)]

∥∥∥∥ ≤ ε,

or ∥∥∥∥f
a
(x) +

1
m

(
n− 1

2

)
f(0)− f(x)− (n− 1)f(0)

∥∥∥∥ ≤ ε

m
,

or

‖fa
(x)− f(x)‖ ≤ 1

2
2

∣∣mn− [
1 +

(
n
2

)]∣∣ + (n− 1)|2m− n + 2|
m

∣∣mn− [
1 +

(
n
2

)]∣∣ ε, (9)

where

f
a
(x) =

n∑
i=1

f(aix)
/ n∑

i=1

a2
i (10)

is the square of the quadratic weighted mean of f with respect to a.
In addition, replacing xi = aix (i = 1, 2, . . . , n) in the inequality (5) and using

(8) and (10), as well as the triangle inequality, one gets the functional inequality

∥∥∥∥f(mx) +
(

n

2

)
f(0)−m

n∑
i=1

f(aix)
∥∥∥∥ ≤ ε,

or ∥∥∥∥f
a
(x)−m−2f(mx)− 1

m2

(
n

2

)
f(0)

∥∥∥∥ ≤ ε

m2
,

or

‖fa
(x)−m−2f(mx)‖ ≤

∣∣mn− [
1 +

(
n
2

)]∣∣ +
(
n
2

)
m2

∣∣mn− [
1 +

(
n
2

)]∣∣ ε.

From this, (7a) and (9), as well as the triangle inequality we get the basic
inequality

‖f(x)−m−2f(mx)‖ ≤ ‖f(x)− f
a
(x)‖+ ‖fa

(x)−m−2f(mx)‖

or
‖f(x)−m−2f(mx)‖ ≤ c1(1−m−2). (11)
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By induction on p ∈ N we prove that the general functional inequality

‖f(x)−m−2pf(mpx)‖ ≤ c1(1−m−2p), (12)

holds for every x ∈ X, any p ∈ N, as well as 1 < m 6= [
1 +

(
n
2

)] /
n : n = 2, 3, 4, . . . .

The sequence {fp(x)} : fp(x) = {m−2pf(mpx)} converges, because Y is com-
plete and this sequence is clearly a Cauchy sequence. Hence Q = Q(x) is a well-
defined mapping via the formula (6). This means that the limit (6) exists for every
x ∈ X.

In addition, we claim that mapping Q : X → Y satisfies the functional equation
(1) for every vector (x1, x2, . . . , xn) ∈ Xn.

In fact, it is clear from the functional inequality (5) and the limit (6) that the
inequality

m−2p

∥∥∥∥f

( n∑
i=1

aim
pxi

)
+

∑
1≤i<j≤n

f(ajm
pxi−aim

pxj)−m
n∑

i=1

f(mpxi)
∥∥∥∥ ≤ m−2pε,

holds for every xi ∈ X (i = 1, 2, . . . , n) : n = 2, 3, 4, . . . , and any p ∈ N. Therefore
from this inequality one gets

∥∥∥∥Q

( n∑
i=1

aixi

)
+

n∑
1≤i<j≤n

Q(ajxi − aixj)−m

n∑
i=1

Q(xi)
∥∥∥∥ = 0,

thus the mapping Q : X → Y satisfies the functional equation (1) for every xi ∈ X
(i = 1, 2, . . . , n). Thus Q is a quadratic mapping with respect to a. It is now clear
from (12), (6) and letting p tend to ∞ that inequality (7) holds in X, completing
the existence proof.

Proof of Uniqueness. Let Q′ : X → Y be a quadratic mapping satisfying (7), as
well as Q. Then Q′ = Q.

To do this remember that both Q and Q′ satisfy (2), too. Then from this and
(2) one proves that

‖Q(x)−Q′(x)‖ = ‖m−2pQ(mpx)−m−2pQ′(mpx)‖
≤ m−2n

{‖Q(mpx)− f(mpx)‖+ ‖f(mpx)−Q′(mpx)‖}
≤ 2(m−2p)c1 → 0

holds for every x ∈ X, and any p ∈ N. Thus p → ∞ completes the proof of the
stability since 1 < m 6= [

1 +
(
n
2

)] /
n.

Consider now the case 0 < m < 1.
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We write bi = ai/m (i = 1, 2, . . . , n), b = (b1, b2, . . . , bn) and

f
b
(x) =

n∑
i=1

f(bix)
/ n∑

i=1

b2i . (13)

From (8) and (13) and the substitution of x1 = x/m, xj = 0 (j = 2, 3, . . . , n)
in inequality (5) we get∥∥∥∥

n∑
i=1

f((ai/m)x) +
(

n− 1
2

)
f(0)−m

[
f(m−1x) + (n− 1)f(0)

]∥∥∥∥ ≤ ε,

or ∥∥f
b
(x)−m2f(m−1x)

∥∥ ≤ m

2
2

[
1 +

(
n
2

)−mn
]
+ (n− 1)|n− 2− 2m|

1 +
(
n
2

)−mn
ε. (14)

In addition, replacing xi by (ai/m)x (i = 1, 2, . . . , n) in inequality (5) and
applying (8) and (13), as well as the triangle inequality, one derives the functional
inequality ∥∥∥∥f(x) +

(
n

2

)
f(0)−m

n∑
i=1

f((ai/m)x)
∥∥∥∥ ≤ ε,

or ∥∥∥∥f
b
(x)− f(x)−

(
n

2

)
f(0)

∥∥∥∥ ≤ ε,

or ∥∥f
b
(x)− f(x)

∥∥ ≤ 1 + 2
(
n
2

)−mn

1 +
(
n
2

)−mn
ε.

Thus from this and (14) we get the basic inequality∥∥f(x)−m2f(m−1x)
∥∥ ≤ ∥∥f(x)− f

b
(x)

∥∥ +
∥∥f

b
(x)−m2f(m−1x)

∥∥ ≤ c2(1−m2).

By induction on p ∈ N we prove that the general functional inequality

‖f(x)−m2pf(m−px)‖ ≤ c2(1−m2p),

holds for every x ∈ X, any p ∈ N and m ∈ (0, 1).
The remaining part of the proof in this case 0 < m < 1, is omitted as similar

to the corresponding proof of the previous case 1 < m 6= [
1 +

(
n
2

)] /
n.

Remarks.
1. If n = 2: ai = 1 (i = 1, 2) or m = 2, then c = c1 = 11

6 ε.
2. If n = 2: ai = 1

2 (i = 1, 2) or m = 1
2 , then c = c2 = 11

3 ε.
Note that in these cases a better constant c = 1

2ε may be found if new substi-
tutions of xi = x (i = 1, 2) are applied into (5).
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