Solution of the Ulam Stability Problem for Euler-L agrange Q uadratic M appings

J ohn M ichael Rassias

Pedagogical Department E.E., National and Capodistrian University of Athens, Section of Mathematics and Informatics, 4, Agamemnonos St., Aghia Paraskevi, Attikis, 15342, Greece

Submitted by Brian S. Thomson
R eceived A pril 3, 1996

In 1940 S. M. U lam proposed at the U niversity of Wisconsin the problem: " G ive conditions in order for a linear mapping near an approximately linear mapping to exist." In 1968 S. U. Ulam proposed the more general problem: "W hen is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?" In 1978 P. M. Gruber proposed the Ulam type problem: "Suppose a mathematical object satisfies a certain property approximately. Is it then possible to approximate this object by objects, satisfying the property exactly?" A ccording to P. M. Gruber this kind of stability problems is of particular interest in probability theory and in the case of functional equations of different types. In 1982-1996 we solved the above U lam problem, or equivalently the U lam type problem for linear mappings and established analogous stability problems. In this paper we first introduce new quadratic weighted means and fundamental functional equations and then solve the Ulam stability problem for non-linear Euler-Lagrange quadratic mappings $Q: X \rightarrow Y$, satisfying a mean equation and functional equation

$$
\begin{aligned}
& m_{1} m_{2} Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right) \\
& =\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q\left(x_{1}\right)+m_{1} Q\left(x_{2}\right)\right]
\end{aligned}
$$

for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$, with X a normed linear space ($Y:=$ a real complete normed linear space), and any fixed pair (a_{1}, a_{2}) of reals a_{i} and any fixed pair $\left(m_{1}, m_{2}\right)$ of positive reals $m_{i}(i=1,2)$,

$$
0<m=\frac{m_{1}+m_{2}}{m_{1} m_{2}+1}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right) .
$$

1. FUNDAMENTAL FUNCTIONAL EQUATION OF FIRST TYPE

Let X be a normed linear space and let Y be a real complete normed linear space. Then consider a non-linear mapping $Q: X \rightarrow Y$ satisfying the fundamental functional equation

$$
\begin{align*}
& m_{1}^{2} m_{2} Q\left(a_{1} x\right)+m_{1} Q\left(m_{2} a_{2} x\right) \\
& \quad=m_{0}^{2} m_{2} Q\left(\frac{m_{1}}{m_{0}} a_{1} x\right)+m_{0}^{2} m_{1} Q\left(\frac{m_{2}}{m_{0}} a_{2} x\right), \tag{}
\end{align*}
$$

with

$$
m_{0}=\frac{m_{1} m_{2}+1}{m_{1}+m_{2}}
$$

for all $x \in X$, and any fixed reals a_{i} and positive reals $m_{i}(i=1,2)$:

$$
m=\frac{m_{1} a_{1}^{2}+m_{2} a_{2}^{2}}{m_{0}}>1
$$

Note that if $m_{1}=1, m_{2}>0$, then $m_{0}=1, m=a_{1}^{2}+m_{2} a_{2}^{2}$, and $(*)$ is an identity in X. In this case (*) is not required.

M oreover this mapping Q may be called quadratic because if $Q(x)=x^{2}$, then $\left(^{*}\right)$ holds.

Definition 1. Let X be a normed linear space and let Y be a real complete normed linear space. Then a non-linear mapping $Q: X \rightarrow Y$ is called Euler-Lagrange quadratic if $(*)$ and

$$
\begin{align*}
& m_{1} m_{2} Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right) \\
& \quad=\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q\left(x_{1}\right)+m_{1} Q\left(x_{2}\right)\right] \tag{1}
\end{align*}
$$

hold for all 2-dimensional vectors (x_{1}, x_{2}) $\in X^{2}$, and any fixed reals a_{i} and positive reals $m_{i}(i=1,2): m>1[4-13]$.

Note that mapping Q may be called quadratic, as well, because the following Euler-Lagrange identity

$$
\begin{gathered}
m_{1} m_{2}\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2}+\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right)^{2} \\
=\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} x_{1}^{2}+m_{1} x_{2}^{2}\right]
\end{gathered}
$$

holds with any fixed reals a_{i} and $m_{i}(i=1,2)$, and because the functional equation

$$
\begin{equation*}
Q\left(m^{n} x\right)=\left(m^{n}\right)^{2} Q(x), \tag{2}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed reals a_{i} and positive reals m_{i} ($i=1,2$): $m>1$.

In fact, substitution of $x_{1}=x_{2}=0$ in Eq. (1) yields

$$
\left(m_{1} m_{2}+1\right)(1-m) Q(0)=0,
$$

or

$$
\begin{equation*}
Q(0)=0, \quad m>1\left(\text { and } m_{1}, m_{2}>0\right) . \tag{1a}
\end{equation*}
$$

Substituting $x_{1}=x, x_{2}=0$ in (1) and employing (1a) one gets that

$$
m_{1} m_{2} Q\left(a_{1} x\right)+Q\left(m_{2} a_{2} x\right)=\frac{m_{1} m_{2}+1}{m_{1}+m_{2}} m\left[m_{2} Q(x)+m_{1} Q(0)\right]
$$

or

$$
\begin{equation*}
\frac{m_{1}}{m_{0}} Q\left(a_{1} x\right)+\frac{1}{m_{0} m_{2}} Q\left(m_{2} a_{2} x\right)=m Q(x), \tag{2a}
\end{equation*}
$$

holds for all $x \in X$, and any fixed real $m: m>1$.
M oreover substitution of $x_{1}=\left(m_{1} a_{1} / m_{0}\right) x, x_{2}=\left(m_{2} a_{2} / m_{0}\right) x$ in (1) and using (1a) one finds that

$$
m_{1} m_{2} Q(m x)+Q(0)=m_{0} m\left[m_{2} Q\left(\frac{m_{1} a_{1}}{m_{0}} x\right)+m_{1} Q\left(\frac{m_{2} a_{2}}{m_{0}} x\right)\right],
$$

or

$$
\frac{m_{0}}{m_{1} m_{2}}\left[m_{2} Q\left(\frac{m_{1} a_{1}}{m_{0}} x\right)+m_{1} Q\left(\frac{m_{2} a_{2}}{m_{0}} x\right)\right]=m^{-1} Q(m x),
$$

or

$$
\begin{equation*}
\frac{m_{0}}{m_{1}} Q\left(\frac{m_{1}}{m_{0}} a_{1} x\right)+\frac{m_{0}}{m_{2}} Q\left(\frac{m_{2}}{m_{0}} a_{2} x\right)=m^{-1} Q(m x), \quad m>1 \tag{2b}
\end{equation*}
$$

holds for all $x \in X$.
Functional Eqs. (2a)-(2b) and (*) yield

$$
\begin{equation*}
Q(m x)=(m)^{2} Q(x) \tag{2c}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: m>1$.
Then induction on $n \in N$ with $x \rightarrow m^{n-1} x$ yields Eq. (2).

Definition 2. Let X be a normed linear space and let Y be a real complete normed linear space. Then we call the non-linear mappings \bar{Q} : $X \rightarrow Y$, and $\overline{\bar{Q}}: X \rightarrow Y$ 2-dimensional quadratic weighted means of first and second form if

$$
\begin{equation*}
\bar{Q}(x)=m_{0}^{2} \frac{m_{2} Q\left(\left(m_{1} / m_{0}\right) a_{1} x\right)+m_{1} Q\left(\left(m_{2} / m_{0}\right) a_{2} x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\bar{Q}}(x)=\frac{m_{1} m_{2} Q\left(a_{1} x\right)+Q\left(m_{2} a_{2} x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \tag{3}
\end{equation*}
$$

hold for all $x \in X$ and any fixed real $m>1$, respectively.
Note that the fundamental functional equation (*) is equivalent to the mean functional equation,

$$
\begin{equation*}
\overline{\bar{Q}}(x)=\bar{Q}(x), \tag{*}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: m>1$.
Moreover note that in the case of Eqs. (*) and (1), formulas (3) ($i=1,2$), from [*] and (2a), are of the form

$$
\begin{equation*}
\overline{\bar{Q}}(x)=\bar{Q}(x)=Q(x), \tag{3a}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: m>1$ [2].
Theorem 1. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant $c^{\prime} \geq 0$ such that the fundamental functional inequality

$$
\begin{equation*}
\|\overline{\bar{f}}(x)-\bar{f}(x)\| \leq \frac{c^{\prime}}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \tag{4}
\end{equation*}
$$

holds for all $x \in X, c^{\prime}(:=$ const. indep. of $x) \geq 0$, and any fixed reals a_{1}, a_{2} and positive reals $m_{1}, m_{2}: m>1$, where

$$
\begin{array}{r}
\bar{f}(x)=m_{0}^{2} \frac{m_{2} f\left(\left(m_{1} / m_{0}\right) a_{1} x\right)+m_{1} f\left(\left(m_{2} / m_{0}\right) a_{2} x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \\
\quad \text { with } m_{0}=\frac{m_{1} m_{2}+1}{m_{1}+m_{2}},
\end{array}
$$

and

$$
\overline{\bar{f}}(x)=\frac{m_{1} m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)},
$$

are 2-dimensional quadratic-weighted means of first and second form, respectively, for fixed real $m>1$.

Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant c (independent of x_{1}, x_{2}) ≥ 0 such that the Euler-Lagrange functional inequality

$$
\begin{align*}
& \| m_{1} m_{2} f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right) \\
& \quad-\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f\left(x_{1}\right)+m_{1} f\left(x_{2}\right)\right] \| \leq c \tag{4}
\end{align*}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and any fixed reals a_{1}, a_{2} and positive reals m_{1}, m_{2} :

$$
m=\frac{m_{1} a_{1}^{2}+m_{2} a_{2}^{2}}{m_{0}}=\frac{m_{1}+m_{2}}{m_{1} m_{2}+1}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)>1 .
$$

Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right) \tag{5}
\end{equation*}
$$

exists for all $x \in X$, all $n \in N$, and any fixed real $m: m>1$ and $Q: X \rightarrow Y$ is the unique 2 -dimensional quadratic mapping satisfying functional equation (1) and mean equation [*] or equivalently (1) and $\left(^{*}\right)$, such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq c_{1}, \quad m>1 \tag{6}
\end{equation*}
$$

holds for all $x \in X$ with constant

$$
\left.\left.\begin{array}{rl}
c_{1}=\{ & {\left[m_{1}\left(2 m_{1}+m_{2}\right) m^{2}+\left(1-m_{1}^{2}\right) m-m_{1} m_{2}\right] c} \\
& \left.+\left[\left(m_{1}+m_{2}\right)(m-1) m\right] c^{\prime}\right\} /[
\end{array} m_{1} m_{2}\left(m_{1} m_{2}+1\right)\right\} . ~ \$(m-1)^{2}(m+1)\right] .
$$

Moreover, identity

$$
\begin{equation*}
Q(x)=m^{-2 n} Q\left(m^{n} x\right) \tag{6a}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any real a_{1}, a_{2} and fixed positive reals $m_{1}, m_{2}: m>1$.

Note that if one replaces $x=0$ in $\bar{f}(x)$, and $\overline{\bar{f}}(x)$ for $m>1$, then

$$
\bar{f}(0)=\frac{m_{1} m_{2}+1}{m_{1} m_{2}} \frac{1}{m} f(0), \quad \overline{\bar{f}}(0)=\frac{m_{1}+m_{2}}{m_{2}} \frac{1}{m} f(0),
$$

or

$$
\overline{\bar{f}}(0)-\bar{f}(0)=\frac{m_{1}^{2}-1}{m_{1} m_{2}} \frac{1}{m} f(0),
$$

or

$$
\begin{gathered}
\left(\|f(0)\| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(m-1)},\right. \\
\left.m>1 \text { after substitution of } x_{1}=x_{2}=0 \text { in }(4)_{2}\right) \\
\|\overline{\tilde{f}}(0)-\bar{f}(0)\| \\
\leq \frac{\left|m_{1}^{2}-1\right|}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(m-1)} \frac{1}{m} c \leq \frac{m_{1}+m_{2}}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)} \frac{1}{m} c^{\prime} \\
=\frac{c^{\prime}}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \\
\text { if } c^{\prime} \geq \frac{\left|m_{1}^{2}-1\right|}{\left(m_{1}+m_{2}\right)(m-1)} c, \text { for } m>1, m_{i}>0(i=1,2) .
\end{gathered}
$$

M oreover note that if $m_{1}=m_{2}=1$, then $m_{0}=1$, and $m=a_{1}^{2}+a_{2}^{2}>1$. In this case

$$
\bar{f}(x)=\frac{f\left(a_{1} x\right)+f\left(a_{2} x\right)}{a_{1}^{2}+a_{2}^{2}}=\overline{\bar{f}}(x)
$$

Thus the fundamental functional inequality (4) (or constant c^{\prime}) is not required (because $\bar{f}(x)=\bar{f}(x)$), yielding

$$
c_{1}=\frac{3 m^{2}-1}{2(m-1)^{2}(m+1)} c .
$$

Therefore one gets from Theorem 1 the following Theorem la.
Theorem la. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a
mapping for which there exists a constant $c \geq 0$ such that the Euler-Lagrange functional inequality.

$$
\begin{equation*}
\left\|f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(a_{2} x_{1}-a_{1} x_{2}\right)-\left(a_{1}^{2}+a_{2}^{2}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]\right\| \leq c \tag{4a}
\end{equation*}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and $c(:=$ const. indep. of $\left.x_{1}, x_{2}\right) \geq 0$, and any fixed reals $a_{1}, a_{2}: m=a_{1}^{2}+a_{2}^{2}>1$.

Then the limit

$$
Q(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right),
$$

exists for all $x \in X$, all $n \in N$, and any fixed real $m: m>1$ and $Q: X \rightarrow Y$ is the unique 2 -dimensional quadratic mapping satisfying the functional equation

$$
Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(a_{2} x_{1}-a_{1} x_{2}\right)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[Q\left(x_{1}\right)+Q\left(x_{2}\right)\right],
$$

such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{2} \frac{3 m^{2}-1}{(m-1)^{2}(m+1)} c
$$

and

$$
Q(x)=m^{-2 n} Q\left(m^{n} x\right)
$$

for all $x \in X$, all $n \in N$, and any fixed reals $a_{1}, a_{2}: m>1$.
N ote that if $m_{1}=1, m_{2}>0$, then $m_{0}=1$, and $m=a_{1}^{2}+m_{2} a_{2}^{2}>1$. In this case

$$
\bar{f}(x)=\frac{m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)}{m_{2}\left(a_{1}^{2}+m_{2} a_{2}^{2}\right)}=\bar{f}(x) .
$$

Thus the fundamental inequality (4) (or constant c^{\prime}) is not required (because $\bar{f}(x)=\bar{f}(x)$), yielding

$$
c_{1}=\frac{\left(m_{2}+2\right) m^{2}-m_{2}}{m_{2}\left(m_{2}+1\right)(m-1)^{2}(m+1)} c .
$$

Therefore one gets from Theorem 1 the following Theorem 1 b .
Theorem 1b. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant $c \geq 0$ such that the Euler-Lagrange
functional inequality

$$
\begin{align*}
& \| m_{2} f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(m_{2} a_{2} x_{1}-a_{1} x_{2}\right) \\
& \quad-\left(a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f\left(x_{1}\right)+f\left(x_{2}\right)\right] \| \leq c \tag{4b}
\end{align*}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and $c(:=$ const. indep. of $\left.x_{1}, x_{2}\right) \geq 0$, and any fixed reals a_{1}, a_{2} and positive real $m_{2}: m=a_{1}^{2}+m_{2} a_{2}^{2}$ >1.

Then the limit

$$
Q(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right),
$$

exists for all $x \in X$ and any fixed real $m: m>1$ and $Q: X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying the functional equation

$$
\begin{aligned}
& m_{2} Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(m_{2} a_{2} x_{1}-a_{1} x_{2}\right) \\
& \quad=\left(a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q\left(x_{1}\right)+Q\left(x_{2}\right)\right],
\end{aligned}
$$

such that

$$
\|f(x)-Q(x)\| \leq \frac{\left(m_{2}+2\right) m^{2}-m_{2}}{m_{2}\left(m_{2}+1\right)(m-1)^{2}(m+1)} c
$$

and

$$
Q(x)=m^{-2 n} Q\left(m^{n} x\right)
$$

for all $x \in X$, all $n \in N$, and any fixed reals a_{1}, a_{2} and positive real m_{2} : $m>1$.

Proof of Existence in Theorem 1. Substitution of, $x_{1}=x_{2}=0$, in inequality (4) ${ }_{2}$ with $m_{1} a_{1}^{2}+m_{2} a_{2}^{2}=m m_{0}$, where $m_{0}=\left(m_{1} m_{2}+1\right) /\left(m_{1}+\right.$ m_{2}) yields that

$$
\left\|m_{1} m_{2} f(0)+f(0)-m m_{0}\left[\left(m_{2}+m_{1}\right) f(0)\right]\right\| \leq c,
$$

or

$$
\begin{equation*}
\|f(0)\| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(m-1)}, \quad m>1 . \tag{7}
\end{equation*}
$$

M oreover substituting $x_{1}=x, x_{2}=0$ in inequality (4) $)_{2}$ and employing (7) and the triangle inequality one concludes the functional inequality

$$
\left\|m_{1} m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)-m_{0} m\left[m_{2} f(x)+m_{1} f(0)\right]\right\| \leq c,
$$

or

$$
\|\overline{\bar{f}}(x)-f(x)\| \leq \frac{c}{m_{0} m_{2} m}+\frac{m_{1}}{m_{2}} \frac{c}{\left(m_{1} m_{2}+1\right)(m-1)},
$$

or

$$
\begin{equation*}
\|\overline{\bar{f}}(x)-f(x)\| \leq \frac{\left(2 m_{1}+m_{2}\right) m-\left(m_{1}+m_{2}\right)}{m_{2}\left(m_{1} m_{2}+1\right)(m-1) m} c, \quad m>1 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\bar{f}}(x)=\frac{m_{1} m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \quad m>1 \tag{8a}
\end{equation*}
$$

is the 2-dimensional quadratic weighted mean of second form (for $m>1$). In addition replacing

$$
x_{1}=\frac{m_{1} a_{1}}{m_{0}} x, \quad x_{2}=\frac{m_{2} a_{2}}{m_{0}} x
$$

in inequality (4) $)_{2}$ and using (7) and (8a), and the triangle inequality, one gets the functional inequality

$$
\left\|m_{1} m_{2} f(m x)+f(0)-m_{0} m\left[m_{2} f\left(\frac{m_{1} a_{1}}{m_{0}} x\right)+m_{1} f\left(\frac{m_{2} a_{2}}{m_{0}} x\right)\right]\right\| \leq c
$$

or

$$
\begin{equation*}
\left\|\overline{\bar{f}}(x)-m^{-2} f(m x)\right\| \leq \frac{\left(m_{1} m_{2}+1\right)(m-1)+1}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(m-1) m^{2}} c, \quad m>1 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{f}(x)=m_{0}^{2} \frac{m_{2} f\left(\left(m_{1} / m_{0}\right) a_{1} x\right)+m_{1} f\left(\left(m_{2} / m_{0}\right) a_{2} x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \quad m>1 \tag{9a}
\end{equation*}
$$

is the 2-dimensional quadratic weighted mean of first form (for $m>1$).

M oreover

$$
\begin{aligned}
& \|\overline{\bar{f}}(x)-\bar{f}(x)\| \\
& =\| \frac{m_{1} m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)}{m_{2} m_{0} m} \\
& \\
& \\
& \quad-\frac{m_{0}\left[m_{2} f\left(\left(m_{1} / m_{0}\right) a_{1} x\right)+m_{1} f\left(\left(m_{2} / m_{0}\right) a_{2} x\right)\right]}{m_{1} m_{2} m} \|,
\end{aligned}
$$

or

$$
\begin{aligned}
& \|\overline{\bar{f}}(x)-\bar{f}(x)\| \\
& =\frac{\| m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right)-m_{0}^{2} m_{2} f\left(\left(m_{1} / m_{0}\right) a_{1} x\right)}{-m_{0}^{2} m_{1} f\left(\left(m_{2} / m_{0}\right) a_{2} x\right) \|} .
\end{aligned}
$$

E mploying the fundamental functional inequality (4) ${ }_{1}$ one gets the equivalent inequality

$$
\begin{align*}
& \left\|m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right)-m_{0}^{2} m_{2} f\left(\frac{m_{1}}{m_{0}} a_{1} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2}}{m_{0}} a_{2} x\right)\right\| \\
& \leq c^{\prime}, \tag{4a}
\end{align*}
$$

for all $x \in X$, and any fixed real $m>1$.
Functional inequalities (8)-(9) and (4) ${ }_{1}$ (or (4a) $)_{1}$), and the triangle inequality yield the basic inequality,

$$
\begin{aligned}
& \left\|f(x)-m^{-2} f(m x)\right\| \\
& \leq\|f(x)-\overline{\bar{f}}(x)\|+\|\overline{\tilde{f}}(x)-\bar{f}(x)\|+\left\|\bar{f}(x)-m^{-2} f(m x)\right\| \\
& \leq \\
& \quad \frac{\left(2 m_{1}+m_{2}\right) m-\left(m_{1}+m_{2}\right)}{m_{2}\left(m_{1} m_{2}+1\right)(m-1) m} c+\frac{m_{1}+m_{2}}{m_{1} m_{2}\left(m_{1} m_{2}+1\right) m} c^{\prime} \\
& \quad+\frac{\left(m_{1} m_{2}+1\right)(m-1)+1}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(m-1) m^{2}} c \\
& \quad
\end{aligned}
$$

or

$$
\begin{aligned}
& \left\|f(x)-m^{-2} f(m x)\right\| \\
& \leq \frac{\left[m_{1}\left(2 m_{1}+m_{2}\right) m^{2}+\left(1-m_{1}^{2}\right) m-m_{1} m_{2}\right] c+\left(m_{1}+m_{2}\right)(m-1) m c^{\prime}}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(m-1) m^{2}}
\end{aligned}
$$

or

$$
\begin{equation*}
\left\|f(x)-m^{-2} f(m x)\right\| \leq c_{1}\left(1-m^{-2}\right), \quad m>1 \tag{10}
\end{equation*}
$$

where

$$
c_{1}=\frac{\left[m_{1}\left(2 m_{1}+m_{2}\right) m^{2}+\left(1-m_{1}^{2}\right) m-m_{1} m_{2}\right] c}{+\left[\left(m_{1}+m_{2}\right)(m-1) m\right] c^{\prime}} \begin{align*}
& m_{1} m_{2}\left(m_{1} m_{2}+1\right)(m-1)^{2}(m+1)
\end{align*}
$$

F or instance, if $m_{1}=m_{2}=1$ and $a_{1}=a_{2}=1$, then $m_{0}=1$, and $m=2$ >1. In this case there is no c^{\prime}-part in c_{1} (formula (10a)) because $\bar{f}(x)=$ $\bar{f}(x)$. H ence $c_{1}=(11 / 6) c$.
N ote that in this case a better constant $c_{1}=(1 / 2) c(<(11 / 6) c)$ may be found if new substitution $x_{1}=x_{2}=x$ is applied into Eq. (4) $)_{1}$ with $m_{i}=a_{i}$ $=1(i=1,2)$. In fact, $\|f(2 x)+f(0)-4 f(x)\| \leq c$ with $\|f(0)\| \leq c / 2$, or

$$
\|f(2 x)-4 f(x)\| \leq c+\|f(0)\| \leq \frac{3}{2} c
$$

or

$$
\begin{equation*}
\left\|f(x)-2^{-2} f(2 x)\right\| \leq c_{1}\left(1-2^{-2}\right), \quad c_{1}=\frac{1}{2} c \tag{11}
\end{equation*}
$$

Replacing now x with $m x$ in (10) one concludes that

$$
\left\|f(m x)-m^{-2} f\left(m^{2} x\right)\right\| \leq c_{1}\left(1-m^{-2}\right)
$$

or

$$
\begin{equation*}
\left\|m^{-2} f(m x)-m^{-4} f\left(m^{2} x\right)\right\| \leq c_{1}\left(m^{-2}-m^{-4}\right) \tag{10b}
\end{equation*}
$$

holds for all $x \in X$ and any fixed real $m: m>1$.
F unctional inequalities (10)-(10b) and the triangle inequality yield

$$
\begin{aligned}
& \left\|f(x)-m^{-4} f\left(m^{2} x\right)\right\| \\
& \quad \leq\left\|f(x)-m^{-2} f(m x)\right\|+\left\|m^{-2} f(m x)-m^{-4} f\left(m^{2} x\right)\right\| \\
& \quad \leq c_{1}\left[\left(1-m^{-2}\right)+\left(m^{-2}-m^{-4}\right)\right]
\end{aligned}
$$

or

$$
\begin{equation*}
\left\|f(x)-m^{-4} f\left(m^{2} x\right)\right\| \leq c_{1}\left(1-m^{-4}\right), \quad m>1 \tag{10c}
\end{equation*}
$$

holds for all $x \in X$.
Similarly by induction on $n \in N$ with $x \rightarrow m^{n-1} x$ in (10) claim that the general functional inequality

$$
\begin{equation*}
\left\|f(x)-m^{-2 n} f\left(m^{n} x\right)\right\| \leq c_{1}\left(1-m^{-2 n}\right), \quad m>1 \tag{12}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed real $m: m>1$.
In fact, the basic inequality (10) with $x \rightarrow m^{n-1} x$ yields inequality

$$
\left\|f\left(m^{n-1} x\right)-m^{-2} f\left(m^{n} x\right)\right\| \leq c_{1}\left(1-m^{-2}\right)
$$

or

$$
\begin{align*}
& \left\|m^{-2(n-1)} f\left(m^{n-1} x\right)-m^{-2 n} f\left(m^{n} x\right)\right\| \\
& \quad \leq c_{1}\left(m^{-2(n-1)}-m^{-2 n}\right), \quad m>1 \tag{12a}
\end{align*}
$$

for all $x \in X$.
By induction hypothesis with $n \rightarrow n-1$ in (12) inequality

$$
\begin{equation*}
\left\|f(x)-m^{-2(n-1)} f\left(m^{n-1} x\right)\right\| \leq c_{1}\left(1-m^{-2(n-1)}\right), \quad m>1 \tag{12b}
\end{equation*}
$$

holds for all $x \in X$.
Thus functional inequalities (12a)-(12b) and the triangle inequality imply

$$
\begin{aligned}
& \left\|f(x)-m^{-2 n} f\left(m^{n} x\right)\right\| \\
& \leq\left\|f(x)-m^{-2(n-1)} f\left(m^{n-1} x\right)\right\| \\
& \quad+\left\|m^{-2(n-1)} f\left(m^{n-1} x\right)-m^{-2 n} f\left(m^{n} x\right)\right\|
\end{aligned}
$$

or

$$
\begin{aligned}
& \left\|f(x)-m^{-2 n} f\left(m^{n} x\right)\right\| \\
& \quad \leq c_{1}\left[\left(1-m^{-2(n-1)}\right)+\left(m^{-2(n-1)}-m^{-2 n}\right)\right] \\
& = \\
& c_{1}\left(1-m^{-2 n}\right), \quad m>1
\end{aligned}
$$

completing the proof of the required functional inequality (12).
Claim now that the sequence

$$
\left\{m^{-2 n} f\left(m^{n} x\right)\right\}
$$

converges.

Note that from the general inequality (12) and the completeness of Y, one proves that the above sequence is a Cauchy sequence.

In fact, if $i>j>0$, then

$$
\begin{equation*}
\left\|m^{-2 i} f\left(m^{i} x\right)-m^{-2 j} f\left(m^{j} x\right)\right\|=m^{-2 j}\left\|m^{-2(i-j)} f\left(m^{i} x\right)-f\left(m^{j} x\right)\right\|, \tag{13}
\end{equation*}
$$

for all $x \in X$, all $i, j \in N$, and any fixed real $m>1$.
Setting $h=m^{j} x$ in (13) and employing general inequality (12) one concludes that

$$
\begin{aligned}
\left\|m^{-2 i} f\left(m^{i} x\right)-m^{-2 j} f\left(m^{j} x\right)\right\| & =m^{-2 j}\left\|m^{-2(i-j)} f\left(m^{i-j} h\right)-f(h)\right\| \\
& \leq m^{-2 j} c_{1}\left(1-m^{-2(i-j)}\right),
\end{aligned}
$$

or

$$
\left\|m^{-2 i} f\left(m^{i} x\right)-m^{-2 j} f\left(m^{j} x\right)\right\| \leq c_{1}\left(m^{-2 j}-m^{-2 i}\right)<c_{1} m^{-2 j},
$$

or

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|m^{-2 i} f\left(m^{i} x\right)-m^{-2 j} f\left(m^{j} x\right)\right\|=0 \tag{13a}
\end{equation*}
$$

completing the proof that the sequence $\left\{m^{-2 n} f\left(m^{n} x\right)\right\}$ converges. Hence $Q=Q(x)$ is a well-defined mapping via the formula (5). This means that the limit (5) exists for all $x \in X$.
In addition claim that mapping Q satisfies the functional equation (1) for all vectors $\left(x_{1}, x_{2}\right) \in X^{2}$.

In fact, it is clear from functional inequality (4) $)_{2}$ and the limit (5) that inequality

$$
\begin{align*}
& m^{-2 n} \| m_{1} m_{2} f\left(a_{1} m^{n} x_{1}+a_{2} m^{n} x_{2}\right)+f\left(m_{2} a_{2} m^{n} x_{1}-m_{1} a_{1} m^{n} x_{2}\right) \\
&-\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f\left(m^{n} x_{1}\right)+m_{1} f\left(m^{n} x_{2}\right)\right] \| \leq m^{-2 n} c \tag{14}
\end{align*}
$$

holds for all $x_{1}, x_{2} \in X$, all $n \in N$, and any fixed real $m>1$.
Therefore from inequality (14) one gets

$$
\begin{aligned}
& \| m_{1} m_{2} \lim _{n \rightarrow \infty} m^{-2 n} f\left[m^{n}\left(a_{1} x_{1}+a_{2} x_{2}\right)\right] \\
& +\lim _{n \rightarrow \infty} m^{-2 n} f\left[m^{n}\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right)\right]-\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right) \\
& \times\left[m_{2} \lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x_{1}\right)+m_{1} \lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x_{2}\right)\right] \| \\
& \quad \leq\left(\lim _{n \rightarrow \infty} m^{-2 n}\right) c=0, \quad m>1
\end{aligned}
$$

or

$$
\begin{aligned}
& \| m_{1} m_{2} Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right) \\
& \quad-\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q\left(x_{1}\right)+m_{1} Q\left(x_{2}\right)\right] \|=0,
\end{aligned}
$$

or mapping Q satisfies the functional equation (1) for all $x_{1}, x_{2} \in X$, and $m>1$. Thus Q is a 2-dimensional quadratic mapping. It is clear now from general inequality (12), $n \rightarrow \infty$, and formula (5) that inequality (6) holds in X, completing the existence proof of this Theorem 1.

Proof of Uniqueness in Theorem 1. Let $Q^{\prime}: X \rightarrow Y$ be another 2-dimensional quadratic mapping satisfying functional equation (1), such that

$$
\begin{equation*}
\left\|f(x)-Q^{\prime}(x)\right\| \leq c_{1}, \tag{6}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m>1$.
If there exists a 2-dimensional quadratic mapping $Q: X \rightarrow Y$ satisfying Eq. (1), then

$$
\begin{equation*}
Q(x)=Q^{\prime}(x), \tag{15}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m>1$.
To prove the above-mentioned uniqueness employ (6a) for Q and Q^{\prime}, as well, so that

$$
\begin{equation*}
Q^{\prime}(x)=m^{-2 n} Q^{\prime}\left(m^{n} x\right) \tag{6a}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed $m>1$.
M oreover the triangle inequality and functional inequalities (6)-(6)' yield

$$
\left\|Q\left(m^{n} x\right)-Q^{\prime}\left(m^{n} x\right)\right\| \leq\left\|Q\left(m^{n} x\right)-f\left(m^{n} x\right)\right\|+\left\|f\left(m^{n} x\right)-Q^{\prime}\left(m^{n} x\right)\right\|,
$$

or

$$
\begin{equation*}
\left\|Q\left(m^{n} x\right)-Q^{\prime}\left(m^{n} x\right)\right\| \leq 2 c_{1}, \tag{16}
\end{equation*}
$$

for all $x \in X$, all $n \in N$, and any fixed real $m>1$.
Then from (6a)-(6a)', and (16), one proves that

$$
\left\|Q(x)-Q^{\prime}(x)\right\|=\left\|m^{-2 n} Q\left(m^{n} x\right)-m^{-2 n} Q^{\prime}\left(m^{n} x\right)\right\|,
$$

or

$$
\begin{equation*}
\left\|Q(x)-Q^{\prime}(x)\right\| \leq 2 m^{-2 n} c_{1}, \tag{16a}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed real $m>1$.

Therefore from (16a), and $n \rightarrow \infty$, one establishes

$$
\lim _{n \rightarrow \infty}\left\|Q(x)-Q^{\prime}(x)\right\| \leq 2\left(\lim _{n \rightarrow \infty} m^{-2 n}\right) c_{1}=0, \quad m>1,
$$

or

$$
\left\|Q(x)-Q^{\prime}(x)\right\|=0,
$$

or

$$
\begin{equation*}
Q(x)=Q^{\prime}(x), \quad m>1, \tag{17}
\end{equation*}
$$

for all $x \in X$, completing the proof of uniqueness and thus the stability of Theorem 1.

2. FUNDAMENTAL FUNCTIONAL EQUATION OF SECOND TYPE

We note that an analogous definition to D efinition 1 holds for quadratic mapping Q (for $0<m<1$) if we replace $m>1$ in Definition 1 with $0<m<1$ and keep the rest of D efinition 1 unchanged.
M oreover the functional equation

$$
\begin{equation*}
Q\left(m^{-n} x\right)=\left(m^{-n}\right)^{2} Q(x), \quad 0<m<1 \tag{2}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed real m : $0<m<1$.
Similarly substitution of $x_{1}=x_{2}=0$ in (1) yields

$$
\begin{equation*}
Q(0)=0, \quad 0<m<1\left(\text { and fixed } m_{1}, m_{2}>0\right) . \tag{1a}
\end{equation*}
$$

Substituting $x_{1}=x / m, x_{2}=0$ in (1) and employing (1a)' one finds that

$$
m_{1} m_{2} Q\left(\frac{a_{1}}{m} x\right)+Q\left(m_{2} \frac{a_{2}}{m} x\right)=m_{0} m_{2} m Q\left(m^{-1} x\right)
$$

or

$$
\begin{equation*}
\frac{m_{1}}{m_{0}} Q\left(\frac{a_{1}}{m} x\right)+\frac{1}{m_{0} m_{2}} Q\left(m_{2} \frac{a_{2}}{m} x\right)=m Q\left(m^{-1} x\right) \tag{2a}
\end{equation*}
$$

holds for all $x \in X$ and any fixed real a_{i} and positive real $m_{i}(i=1,2)$: $0<m<1$.

In addition substituting $x_{1}=\left(m_{1} a_{1} / m_{0} m\right) x, x_{2}=\left(m_{2} a_{2} / m_{0} m\right) x$ in (1) and employing (1a)' one gets that

$$
m_{1} m_{2} Q(x)=m_{0} m\left[m_{2} Q\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+m_{1} Q\left(\frac{m_{2} a_{2}}{m_{0} m} x\right)\right],
$$

or

$$
\begin{equation*}
\frac{m_{0}}{m_{1}} Q\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+\frac{m_{0}}{m_{2}} Q\left(\frac{m_{2} a_{2}}{m_{0} m} x\right)=m^{-1} Q(x) \tag{2b}
\end{equation*}
$$

holds for all $x \in X$ and any fixed real a_{i} and positive real $m_{i}(i=1,2)$: $0<m<1$.

Let X be a normed linear space and let Y be a real complete normed linear space. Then consider a non-linear mapping $Q: X \rightarrow Y$ satisfying the fundamental functional equation

$$
\begin{align*}
& m_{1}^{2} m_{2} Q\left(\frac{a_{1}}{m} x\right)+m_{1} Q\left(m_{2} \frac{a_{2}}{m} x\right) \\
& \quad=m_{0}^{2} m_{2} Q\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+m_{0}^{2} m_{1} Q\left(\frac{m_{2} a_{2}}{m_{0} m} x\right), \tag{**}
\end{align*}
$$

for all $x \in X$ and any fixed reals a_{i} and positive reals $m_{i}(i=1,2)$: $0<m<1$.

Note that if $m_{1}=1, m_{2}>0$, then $m_{0}=1, m=a_{1}^{2}+m_{2} a_{2}^{2}$, and $(* *)$ is an identity in X. In this case $(* *)$ is not required.

M oreover this mapping Q may be called quadratic because (**) holds for $Q(x)=x^{2}$.

Functional equations (2a)'-(2b)' and (**) yield

$$
\begin{equation*}
Q\left(m^{-1} x\right)=\left(m^{-1}\right)^{2} Q(x) \tag{2c}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: 0<m<1$.
Then induction on $n \in N$ with $x \rightarrow m^{-(n-1)} x$ yields equation

$$
\begin{equation*}
Q\left(m^{-n} x\right)=\left(m^{-n}\right)^{2} Q(x), \quad 0<m<1 \tag{2~d}
\end{equation*}
$$

completing the proof for Eq. (2)'.
Definition 3. Let X be a normed linear space and let Y be a real complete normed linear space. Then we call the non-linear mappings \bar{Q} :
$X \rightarrow Y$, and $\overline{\bar{Q}}: X \rightarrow Y$ 2-dimensional quadratic weighted means of first and second form, if

$$
\begin{equation*}
\bar{Q}(x)=m_{0}^{2} m^{2} \frac{m_{2} Q\left(\left(m_{1} a_{1} / m_{0} m\right) x\right)+m_{1} Q\left(\left(m_{2} a_{2} / m_{0} m\right) x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\bar{Q}}(x)=m^{2} \frac{m_{1} m_{2} Q\left(\left(a_{1} / m\right) x\right)+Q\left(m_{2}\left(a_{2} / m\right) x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \tag{3}
\end{equation*}
$$

hold for all $x \in X$, and any real fixed m : $0<m<1$, respectively. Note that $\left({ }^{*}\right)$ is equivalent to the mean functional equation

$$
\begin{equation*}
\overline{\bar{Q}}(x)=\bar{Q}(x), \tag{**}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: 0<m<1$.
Note that functional equation (2a)' comes from Eq. (2a) if we replace x by x / m. But this x-substitution (x by x / m) does not yield Eq. (2)' directly from Eq. (2). A lso note that the x-substitution or the a-substitution (a_{i} by $a_{i} / m: i=1,2$) does not yield Eq. (2b)' directly from Eq. (2b). Such problems in the transition from the first section to the second section arise many times in this paper. These reasons forced us to add this second section separately.

Theorem 2. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant $c^{\prime \prime} \geq 0$ such that the fundamental functional inequality

$$
\begin{equation*}
\|\overline{\bar{f}}(x)-\bar{f}(x)\| \leq\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}+1}\right)^{2}\left(\frac{m_{1} a_{1}^{2}+m_{2} a_{2}^{2}}{m_{1} m_{2}}\right) c^{\prime \prime} \tag{4}
\end{equation*}
$$

holds for all $x \in X, c^{\prime \prime}(:=$ const. indep. of $x) \geq 0$, and any fixed reals a_{1}, a_{2} and positive reals $m_{1}, m_{2}: 0<m<1$, and

$$
\bar{f}(x)=m_{0}^{2} m^{2} \frac{m_{2} f\left(\left(m_{1} a_{1} / m_{0} m\right) x\right)+m_{1} f\left(\left(m_{2} a_{2} / m_{0} m\right) x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}
$$

and

$$
\overline{\bar{f}}(x)=m^{2} \frac{m_{1} m_{2} f\left(\left(a_{1} / m\right) x\right)+f\left(m_{2}\left(a_{2} / m\right) x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}
$$

are 2 -dimensional quadratic weighted means of first and second form, respectively, for $0<m<1$.

Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant c (independent of x_{1}, x_{2}) ≥ 0 such that the Euler-Lagrange functional inequality

$$
\begin{align*}
& \| m_{1} m_{2} f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(m_{2} a_{2} x_{1}-m_{1} a_{1} x_{2}\right) \\
& \quad-\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f\left(x_{1}\right)+m_{1} f\left(x_{2}\right)\right] \| \leq c \tag{4}
\end{align*}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and any fixed reals a_{1}, a_{2}, and positive reals $m_{1}, m_{2}: 0<m<1$, where $m=\left(\left(m_{1}+m_{2}\right) /\left(m_{1} m_{2}+1\right)\right)$ $\times\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)$.

Then the limit

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} m^{2 n} f\left(m^{-n} x\right), \tag{5}
\end{equation*}
$$

exists for all $x \in X$, all $n \in N$, and any fixed real $m: 0<m<1$ and Q : $X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying functional equation (1) and mean equation ${ }^{[* *]}$ or equivalently (1) and (**), such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq c_{2} \tag{6}
\end{equation*}
$$

holds for all $x \in X$ with constant

$$
c_{2}=\frac{\left[\left(-m_{1} m_{2}\right) m^{2}+\left(m_{1}^{2}-1\right) m+\left(m_{1} m_{2}+2\right)\right] c}{+\left[\left(m_{1}+m_{2}\right)(1-m) m\right] c^{\prime \prime}} \begin{aligned}
& m_{1} m_{2}\left(m_{1} m_{2}+1\right)(1-m)^{2}(1+m)
\end{aligned}
$$

Moreover, identity

$$
\begin{equation*}
Q(x)=m^{2 n} Q\left(m^{-n} x\right), \tag{6a}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed real a_{1}, a_{2} and positive reals $m_{1}, m_{2}: 0<m<1$.

Note that if one replaces $x=0$ in $\bar{f}(x)$, and $\overline{\bar{f}}(x)$ for $0<m<1$, then

$$
\bar{f}(0)=\frac{m_{1} m_{2}+1}{m_{1} m_{2}} m f(0), \quad \overline{\bar{f}}(0)=\frac{m_{1}+m_{2}}{m_{2}} m f(0),
$$

or

$$
\overline{\bar{f}}(0)-\bar{f}(0)=\frac{m_{1}^{2}-1}{m_{1} m_{2}} m f(0),
$$

or

$$
\begin{aligned}
\| \overline{\bar{f}}(0) & -\bar{f}(0) \| \\
& \leq \frac{\left|m_{1}^{2}-1\right|}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(1-m)} m c \leq \frac{m_{1}+m_{2}}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)} m c^{\prime \prime}, \\
& =\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}+1}\right)^{2}\left(\frac{m_{1} a_{1}^{2}+m_{2} a_{2}^{2}}{m_{1} m_{2}}\right) c^{\prime \prime},
\end{aligned}
$$

if

$$
c^{\prime \prime} \geq \frac{\left|m_{1}^{2}-1\right|}{\left(m_{1}+m_{2}\right)(1-m)} c,
$$

for

$$
0<m<1, \quad m_{i}>0(i=1,2),
$$

and

$$
\|f(0)\| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(1-m)}, \quad 0<m<1
$$

(after substitution, $x_{1}=x_{2}=0$ in inequality (4) ${ }_{2}^{\prime}$).
M oreover if $m_{1}=m_{2}=1$, then

$$
\bar{f}(x)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[f\left(\frac{a_{1}}{a_{1}^{2}+a_{2}^{2}} x\right)+f\left(\frac{a_{2}}{a_{1}^{2}+a_{2}^{2}} x\right)\right]=\overline{\bar{f}}(x) .
$$

Thus in this case the fundamental functional inequality (4) (or constant $c^{\prime \prime}$) is not required (because $\bar{f}(x)=\bar{f}(x)$) yielding

$$
c_{2}=\frac{3-m^{2}}{2(1-m)^{2}(1+m)} c .
$$

Therefore one gets from Theorem 2 the following Theorem 2a.
Theorem 2a. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant $c \geq 0$ such that the Euler-Lagrange functional inequality

$$
\begin{equation*}
\left\|f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(a_{2} x_{1}-a_{1} x_{2}\right)-\left(a_{1}^{2}+a_{2}^{2}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]\right\| \leq c \tag{4}
\end{equation*}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and $c(:=$ const. indep. of $\left.x_{1}, x_{2}\right) \geq 0$ and any fixed reals $a_{1}, a_{2}: 0<m=a_{1}^{2}+a_{2}^{2}<1$.

Then the limit

$$
Q(x)=\lim _{n \rightarrow \infty} m^{2 n} f\left(m^{-n} x\right)
$$

exists for all $x \in X$, and any fixed real $m: 0<m<1$ and $Q: X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying the functional equation

$$
Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(a_{2} x_{1}-a_{1} x_{2}\right)=\left(a_{1}^{2}+a_{2}^{2}\right)\left[Q\left(x_{1}\right)+Q\left(x_{2}\right)\right]
$$

such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{2} \frac{3-m^{2}}{(1-m)^{2}(1+m)} c
$$

and

$$
Q(x)=m^{2 n} Q\left(m^{-n} x\right)
$$

for all $x \in X$, all $n \in N$, and any fixed reals $a_{1}, a_{2}: 0<m<1$.
Note that if $m_{1}=1, m_{2}>0$, then $m_{0}=1, m=a_{1}^{2}+m_{2} a_{2}^{2}$, and

$$
\bar{f}(x)=\left(a_{1}^{2}+m_{2} a_{2}^{2}\right) \frac{m_{2} f\left(\left(a_{1} / m\right) x\right)+f\left(m_{2}\left(a_{2} / m\right) x\right)}{m_{2}}=\overline{\bar{f}}(x) .
$$

In this case fundamental inequality (4) (or constant $c^{\prime \prime}$) is not required (because $\bar{f}(x)=\overline{\bar{f}}(x)$), yielding

$$
c_{2}=\frac{\left(-m_{2}\right) m^{2}+\left(m_{2}+2\right)}{m_{2}\left(m_{2}+1\right)(1-m)^{2}(1+m)} c
$$

Therefore one gets from Theorem 2 the following Theorem 2 b .
Theorem 2b. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exists a constant $c \geq 0$ such that the Euler-Lagrange functional inequality

$$
\begin{aligned}
& \| m_{2} f\left(a_{1} x_{1}+a_{2} x_{2}\right)+f\left(m_{2} a_{2} x_{1}-a_{1} x_{2}\right) \\
& \quad-\left(a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f\left(x_{1}\right)+f\left(x_{2}\right)\right] \| \leq c
\end{aligned}
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2}$ and $c(:=$ const. indep. of $\left.x_{1}, x_{2}\right) \geq 0$ and any fixed reals a_{1}, a_{2} and positive real $m_{2}: 0<m=a_{1}^{2}+$ $m_{2} a_{2}^{2}<1$.

Then the limit

$$
Q(x)=\lim _{n \rightarrow \infty} m^{2 n} f\left(m^{-n} x\right)
$$

exists for all $x \in X$, all $n \in N$ and any fixed real $m: 0<m<1$ and Q : $X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying the functional equation

$$
\begin{aligned}
& m_{2} Q\left(a_{1} x_{1}+a_{2} x_{2}\right)+Q\left(m_{2} a_{2} x_{1}-a_{1} x_{2}\right) \\
& \quad=\left(a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q\left(x_{1}\right)+Q\left(x_{2}\right)\right]
\end{aligned}
$$

such that

$$
\|f(x)-Q(x)\| \leq \frac{\left(-m_{2}\right) m^{2}+\left(m_{2}+2\right)}{m_{2}\left(m_{2}+1\right)(1-m)^{2}(1+m)} c
$$

and

$$
Q(x)=m^{2 n} Q\left(m^{-n} x\right)
$$

for all $x \in X$, all $n \in N$, and any fixed reals a_{1}, a_{2}, and positive real m_{2} : $0<m<1$.

Proof of Existence in Theorem 2. Claim first that the following general inequality (12)' holds. In fact, substitution of $x_{1}=x_{2}=0$ in inequality (4)' ${ }_{2}$ yields that

$$
\begin{equation*}
\|f(0)\| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(1-m)}, \quad 0<m<1 \tag{7}
\end{equation*}
$$

M oreover substituting $x_{1}=x / m, x_{2}=0$ in inequality (4)' ${ }_{2}^{\prime}$ and employing (7)' and the triangle inequality one concludes functional inequality

$$
\left\|m_{1} m_{2} f\left(\frac{a_{1}}{m} x\right)+f\left(\frac{m_{2} a_{2}}{m} x\right)-m m_{0}\left[m_{2} f\left(\frac{x}{m}\right)+m_{1} f(0)\right]\right\| \leq c
$$

or

$$
\begin{aligned}
& \left\|\frac{m}{m_{0} m_{2}}\left[m_{1} m_{2} f\left(\frac{a_{1}}{m} x\right)+f\left(m_{2} \frac{a_{2}}{m} x\right)\right]-\frac{m^{2}}{m_{2}}\left[m_{2} f\left(\frac{x}{m}\right)+m_{1} f(0)\right]\right\| \\
& \quad \leq \frac{m}{m_{0} m_{2}} c
\end{aligned}
$$

or

$$
\begin{align*}
& \left\|\overline{\bar{f}}(x)-m^{2} f\left(m^{-1} x\right)\right\| \\
& \quad \leq \frac{\left(m_{1} m_{2}+1\right)(1-m) m+m_{1} m_{0} m^{2}}{m_{0} m_{2}\left(m_{1} m_{2}+1\right)(1-m)} c, \quad 0<m<1 \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\bar{f}}(x)=m^{2} \frac{m_{1} m_{2} f\left(\left(a_{1} / m\right) x\right)+f\left(m_{2}\left(a_{2} / m\right) x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \quad 0<m<1 \tag{8a}
\end{equation*}
$$

is the 2-dimensional quadratic weighted mean of second form (for $0<m<1$).
In addition replacing

$$
x_{1}=\frac{m_{1} a_{1}}{m_{0} m} x, \quad x_{2}=\frac{m_{2} a_{2}}{m_{0} m} x
$$

in inequality (4)' ${ }_{2}$ and using (7)' and (8a)', and the triangle inequality, one gets the functional inequality

$$
\left\|m_{1} m_{2} f(x)+f(0)-m_{0} m\left[m_{2} f\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+m_{1} f\left(\frac{m_{2} a_{2}}{m_{0} m} x\right)\right]\right\| \leq c
$$

or

$$
\begin{aligned}
& \| f(x)
\end{aligned} \begin{aligned}
\| & \frac{m_{0} m}{m_{1} m_{2}}\left[m_{2} f\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+m_{1} f\left(\frac{m_{2} a_{2}}{m_{0} m} x\right)\right] \| \\
& \leq \frac{c}{m_{1} m_{2}}+\frac{1}{m_{1} m_{2}}\|f(0)\|
\end{aligned}
$$

or

$$
\|f(x)-\bar{f}(x)\| \leq \frac{\left(m_{1} m_{2}+1\right)(1-m)+1}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(1-m)} c, \quad 0<m<1
$$

where

$$
\begin{gathered}
\bar{f}(x)=m_{0}^{2} m^{2} \frac{m_{2} f\left(\left(m_{1} a_{1} / m_{0} m\right) x\right)+m_{1} f\left(\left(m_{2} a_{2} / m_{0} m\right) x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} \\
0<m<1
\end{gathered}
$$

is the 2-dimensional quadratic weighted mean of first form (for $0<m<1$).

M oreover

$$
\begin{aligned}
\|\overline{\bar{f}}(x)-\bar{f}(x)\|= & \| \frac{m}{m_{0} m_{2}}\left[m_{1} m_{2} f\left(\frac{a_{1}}{m} x\right)+f\left(m_{2} \frac{a_{2}}{m} x\right)\right] \\
& -\frac{m m_{0}}{m_{1} m_{2}}\left[m_{2} f\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)+m_{1} f\left(\frac{m_{2} a_{2}}{m_{0} m} x\right)\right] \|,
\end{aligned}
$$

or

$$
\begin{aligned}
& \|\overline{\bar{f}}(x)-\bar{f}(x)\| \\
& \quad \| m_{1}^{2} m_{2} f\left(\left(a_{1} / m\right) x\right)+m_{1} f\left(m_{2}\left(a_{2} / m\right) x\right) \\
& =m^{2} \frac{-m_{0}^{2} m_{2} f\left(\left(m_{1} a_{1} / m_{0} m\right) x\right)-m_{0}^{2} m_{1} f\left(\left(m_{2} a_{2} / m_{0} m\right) x\right) \|}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)} .
\end{aligned}
$$

E mploying the fundamental functional inequality (4) ${ }_{1}^{\prime}$ or the equivalent inequality

$$
\begin{equation*}
\|\overline{\bar{f}}(x)-\bar{f}(x)\| \leq m^{2} \frac{c^{\prime \prime}}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}, \tag{4}
\end{equation*}
$$

one gets

$$
\begin{align*}
& \| m_{1}^{2} m_{2} f\left(\frac{a_{1}}{m} x\right)+m_{1} f\left(m_{2} \frac{a_{2}}{m} x\right) \\
& -m_{0}^{2} m_{2} f\left(\frac{m_{1} a_{1}}{m_{0} m} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2} a_{2}}{m_{0} m} x\right) \| \leq c^{\prime \prime} \tag{4a}
\end{align*}
$$

for all $x \in X$, and any fixed real $m: 0<m<1$.
Functional inequalities (8)'-(9)' and (4) ${ }_{1}^{\prime}$ (or (4a) $)_{1}^{\prime \prime}$ or (4a) $)_{1}^{\prime}$), and the triangle inequality yield the basic inequality

$$
\begin{aligned}
& \left\|f(x)-m^{2} f\left(m^{-1} x\right)\right\| \\
& \qquad \begin{array}{ll}
\leq f(x)-\bar{f}(x)\|+\| \bar{f}(x)-\bar{f}(x)\|+\| \bar{f}(x)-m^{2} f\left(m^{-1} x\right) \| \\
\leq & \frac{\left(m_{1} m_{2}+1\right)(1-m)+1}{m_{1} m_{2}\left(m_{1} m_{2}+1\right)(1-m)} c+\frac{m}{m_{0} m_{1} m_{2}} c^{\prime \prime} \\
\quad+\frac{\left(m_{1} m_{2}+1\right)(1-m) m+m_{1} m_{0} m^{2}}{m_{0} m_{2}\left(m_{1} m_{2}+1\right)(1-m)} c
\end{array}
\end{aligned}
$$

or

$$
\begin{equation*}
\left\|f(x)-m^{2} f\left(m^{-1} x\right)\right\| \leq c_{2}\left(1-m^{2}\right), \quad 0<m<1 \tag{10}
\end{equation*}
$$

where

$$
c_{2}=\frac{\left[\left(-m_{1} m_{2}\right) m^{2}+\left(m_{1}^{2}-1\right) m+\left(m_{1} m_{2}+2\right)\right] c}{+\left[\left(m_{1}+m_{2}\right)(1-m) m\right] c^{\prime \prime}} .
$$

For instance, if $m_{1}=m_{2}=1$ and $a_{1}=a_{2}=1 / 2$, then $m_{0}=1$, and $0<m=1 / 2<1$. In this case there is no $c^{\prime \prime}$-part in c_{2} (formula (10a)') because $\overline{\tilde{f}}(x)=\bar{f}(x)$. Hence $c_{2}=(11 / 3) c$. By induction on $n \in N$ with $x \rightarrow m^{-(n-1)} x$ in (10)' claim that the general inequality

$$
\begin{equation*}
\left\|f(x)-m^{2 n} f\left(m^{-n} x\right)\right\| \leq c_{2}\left(1-m^{2 n}\right) \tag{12}
\end{equation*}
$$

holds for all $x \in X$, all $n \in N$, and any fixed real $m: 0<m<1$.
In fact, (10)'-(10a)' with $x \rightarrow m^{-(n-1)} x$ yield inequality

$$
\left\|f\left(m^{-(n-1)} x\right)-m^{2} f\left(m^{-n} x\right)\right\| \leq c_{2}\left(1-m^{2}\right)
$$

or

$$
\begin{equation*}
\left\|m^{2(n-1)} f\left(m^{-(n-1)} x\right)-m^{2 n} f\left(m^{-n} x\right)\right\| \leq c_{2}\left(m^{2(n-1)}-m^{2 n}\right), \tag{12a}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: 0<m<1$.
By the induction hypothesis with $n \rightarrow n-1$ in (12)' inequality

$$
\begin{equation*}
\left\|f(x)-m^{2(n-1)} f\left(m^{-(n-1)} x\right)\right\| \leq c_{2}\left(1-m^{2(n-1)}\right), \tag{12b}
\end{equation*}
$$

for all $x \in X$, and any fixed real $m: 0<m<1$.
Thus functional inequalities (12a)'-(12b)' and the triangle inequality imply

$$
\begin{aligned}
\left\|f(x)-m^{2 n} f\left(m^{-n} x\right)\right\| \leq & \left\|f(x)-m^{2(n-1)} f\left(m^{-(n-1)} x\right)\right\| \\
& +\left\|m^{2(n-1)} f\left(m^{-(n-1)} x\right)-m^{2 n} f\left(m^{-n} x\right)\right\|,
\end{aligned}
$$

or

$$
\left\|f(x)-m^{2 n} f\left(m^{-n} x\right)\right\| \leq c_{2}\left[\left(1-m^{2(n-1)}\right)+\left(m^{2(n-1)}-m^{2 n}\right)\right],
$$

or

$$
\left\|f(x)-m^{2 n} f\left(m^{-n} x\right)\right\| \leq c_{2}\left(1-m^{2 n}\right), \quad 0<m<1,
$$

completing the proof of the required functional inequality (12)'.

The rest of the proof of Theorem 2 (uniqueness, etc.) is omitted as similar to the corresponding proof of Theorem 1 [1, 3, 14].

Example. Take $f: R \rightarrow R$ to be a real function such that $f(x)=x^{2}+$ $k, k=$ constant: $|k| \leq c /\left(m_{1} m_{2}+1\right)(1-m)$, for any fixed reals a_{1}, a_{2} and positive reals $m_{1}, m_{2}: 0<m=\left(\left(m_{1}+m_{2}\right) /\left(m_{1} m_{2}+1\right)\right)\left(m_{1} a_{1}^{2}+\right.$ $\left.m_{2} a_{2}^{2}\right)<1$.

M oreover there exists a unique quadratic mapping $Q: R \rightarrow R$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} m^{2 n}\left[\left(m^{-n} x\right)^{2}+k\right]=x^{2}, \quad 0<m<1
$$

Therefore inequality (6)" holds. In fact the condition on k,

$$
|k| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(1-m)}, \quad 0<m<1
$$

implies

$$
\left\|\left(x^{2}+k\right)-x^{2}\right\|=|k| \leq \frac{1}{m_{1} m_{2}+1} \frac{1}{1-m} c .
$$

But

$$
\frac{1}{1-m}<\frac{\left(-m_{1} m_{2}\right) m^{2}+\left(m_{1}^{2}-1\right) m+\left(m_{1} m_{2}+2\right)}{m_{1} m_{2}(1-m)^{2}(1+m)}, \quad 0<m<1 .
$$

Hence

$$
\|f(x)-Q(x)\|=\left\|\left(x^{2}+k\right)-x^{2}\right\|<c_{2}, \quad 0<m<1, \text { satisfying (6)". }
$$

Note that if $m>1$, then take any real $k=$ constant:

$$
|k| \leq \frac{c}{\left(m_{1} m_{2}+1\right)(m-1)} .
$$

Theorem 3. Let X be a normed linear space and let Y be a real complete normed linear space. Assume in addition that $f: X \rightarrow Y$ is a mapping for which there exist constants c, and $c^{\prime}(\geq 0)$ such that the Euler-Lagrange functional inequality

$$
\left\|f\left(a\left(x_{1}+x_{2}\right)\right)+f\left(a\left(x_{1}-x_{2}\right)\right)-\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]\right\| \leq c
$$

holds for all 2-dimensional vectors $\left(x_{1}, x_{2}\right) \in X^{2},\|f(0)\| \leq c^{\prime}$, and c, c^{\prime} ($:=$ const. indep. of $\left.x_{1}, x_{2}\right) \geq 0$ and $a=1 / \sqrt{2}($ or $:=-1 / \sqrt{2})$.

Then the limit

$$
Q(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left((2 a)^{n} x\right)
$$

exists for all $x \in X$, and all $n \in N$ any fixed real $m: m=2 a^{2}(=1)$ and Q : $X \rightarrow Y$ is the unique 2-dimensional quadratic mapping satisfying the functional equation

$$
Q\left(a\left(x_{1}+x_{2}\right)\right)+Q\left(a\left(x_{1}-x_{2}\right)\right)=Q\left(x_{1}\right)+Q\left(x_{2}\right), \quad m=1
$$

and $Q(0)=0$, such that

$$
\|f(x)-Q(x)\| \leq c+c^{\prime}, \quad m=1
$$

and

$$
Q(x)=2^{-n} Q\left((2 a)^{n} x\right)
$$

for all $x \in X$, and all $n \in N$, and $m=1$.
Note that in this Theorem 3, $a_{1}=a_{2}=a, m_{1}=m_{2}=1$, and thus $m_{0}=1$, and $m=a_{1}^{2}+a_{2}^{2}=2 a^{2}=1$. Thus Theorem 3 is a singular case of Theorems 1-2.

A lso substitution of $x_{1}=x_{2}=x$ in the Euler-Lagrange inequality of this Theorem 3 yields that the basic inequality

$$
\left\|f(x)-2^{-1} f(2 a x)\right\| \leq\left(c+c^{\prime}\right)\left(1-2^{-1}\right)
$$

$$
\text { (from the condition }\|f(0)\| \leq c^{\prime} \text {) }
$$

holds for all $x \in X$.
Then induction on n with $x \rightarrow(2 a)^{n-1} x$ in the above basic inequality yields the general functional inequality

$$
\left\|f(x)-2^{-n} f\left((2 a)^{n} x\right)\right\| \leq\left(c+c^{\prime}\right)\left(1-2^{-n}\right)
$$

for all $x \in X$, and all $n \in N$, and $a= \pm 1 / \sqrt{2}$.
N ote that substitution of $x_{1}=x_{2}=x$ in the E uler-L agrange equation of this Theorem 3, the fact that $Q(0)=0$, and induction on n, yield

$$
Q(x)=2^{-n} Q\left((2 a)^{n} x\right)
$$

for all $x \in X$, all $n \in N$, and $a= \pm 1 / \sqrt{2}$.
The rest of the proof of Theorem 3 is omitted as it is similar to the proof of Theorem 1.

ACKNOWLEDGMENT

We greatly thank the referee of this paper for his essential remarks.

REFERENCES

1. G. L. Forti, Hyers-U lam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.
2. P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277.
3. D. H. Hyers, The stability of homomorphisms and related topics, in "Global A nalysis-A nalysis on M anifolds," Teubner-Texte M ath., V ol. 57, pp. 140-153, Teubner, Leipzig, 1983.
4. J. M. R assias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
5. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
6. J. M. R assias, Solution of a problem of U lam, J. Approx. Theory 57 (1989), 268-273.
7. J. M. Rassias, Complete solution of the multi-dimensional problem of Ulam, Discuss. Math. 14 (1994), 101-107.
8. J. M. R assias, Solution of a stability problem of U lam, Discuss. Math. 12 (1992), 95-103.
9. J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185-190.
10. J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), 231-235.
11. J. M. Rassias, On the stability of the multi-dimensional non-linear Euler-Lagrange functional equation, in "G eometry, A nalysis and M echanics," pp. 275-285, W orld Scientific, Singapore, 1994.
12. J. M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29 (1996), 755-766.
13. L. Szekelyhidi, Note on Hyers' theorem, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 127-129.
14. S. M. Ulam, "A Collection of Mathematical Problems," p. 63, Interscience, N ew Y ork, 1968.
