Landau Problem

John Michael Rassias

- In 1913 , E. Landau (Proc. London Math. Soc. 13 (1913) , no.2 , 43-49) initiated the following extremum problem for twice differentiable functions .

Landau Extremum Problem : The sharp inequality between the supremum-norms of derivatives of twice differentiable functions f such that : $\left\|f^{\prime}\right\|^{2} \leq 4\|f\|\left\|f^{\prime \prime}\right\|$ holds with norm referring to the space $C[0, \infty]$.

If f is a real-valued function defined on $R=(-\infty, \infty)$, $\|f\|=\sup \{|f(x)|: x \in R\}$ and f is twice differentiable and both f and $f^{\prime \prime}$ are bounded, J. Hadamard (Comptes Rendus Acad. Sci. Paris 41 (1914), 68-72) achieved the best possible constant 2 in this case. For $C(-\infty, \infty)$, A. N. Kolmogorov (Ucen. Zap. Moskov. Gos. Unive. , Mat. 30 , (1939) , 3-16 ; Amer. Math. Soc. Transl. 4 , New York , (1949) , 233-243) established the above inequality with the same constant 2 and generalized this inequality to derivatives of order higher than 2 . Besides, R. R. Kallman \& G. C. Rota ("Inequalities , II" (O. Shisha , Ed.), Academic Press, New York , (1970), 187-192) demonstrated that the constant 4 , is true also for a semigroup of linear contractions. Moreover, H. Kraljevic \& S. Kurepa (Glas. Mat. 5 (1970), 109-117) established the constant $4 / 3$ for a strongly continuous cosine function of linear contractions with an infinitesimal generator . In addition , Z. Ditzian (Aequat. Math. 12 (1975) , 145-151) achieved the constant 2 for a group of linear isometries. For a real-valued function f defined on $(0, \infty)$, define $\|f\|=\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{2}}$. If f is twice differentiable and both f and $f^{\prime \prime}$ are bounded , G. H. Hardy ; J. E. Littlewood ; and G. Polya (Proc. London Math. Soc. 25 (1926) , no. 2, 265-282 ; "Inequalities" , (1934) Cambridge , Univ. Press , England) showed the above inequality with 2 the best possible constant. Moreover, these three authors (1934) showed that the general inequality $\left\|f^{(k)}\right\|^{n} \leq\|f\|^{n-k}\left\|f^{(n)}\right\|^{k}, 0<k<n$ holds with 1 the best possible constant, if f is a real-valued function on $(-\infty, \infty)$ and $\|f\|=\left(\int_{-\infty}^{\infty} f^{2}(x) d x\right)^{\frac{1}{2}}$ as well as f is n-differentiable and both f and $f^{(n)}$ are bounded. This extremum problem is interesting in operator theory and approximation theory, as well .

